Light poles

A guide to the selection, installation and maintenance including the cause and effects of pole vibration.

1.1 General
Light poles or lampposts, are ‘engineered’ structures designed to support single or multiple luminaires. They may also be used to support signs, pennants, banners, flower pots, and other decorative items.

1.2 Function
The primary function is to resist the physical forces of luminaire weight, ice and wind loads that poles may encounter over their expected design life. Along with the foundation system, the primary force a pole must withstand is from wind. Because of the variety of pole shapes, heights, size and quantity of luminaires to be supported (including other items that may be attached to the pole), an engineering analysis must be done to ensure the customer will receive a pole adequate for the task. It must be capable of providing a long service life, be relatively maintenance free, and aesthetically pleasing. Due to unforeseen loadings and wind events which may occur, it is advisable to select a pole with an ample margin of structural capacity.

1.3 Definitions
(Common pole terminology used throughout this paper with abbreviations)

• Cd (coefficient of drag)
The ratio of the ‘apparent’ wind area to the actual silhouette area of an object or luminaire. Streamlined objects have lower Cds than blunt or flat sided objects. See Section 7 - Commentary on Page 7.

• EPA (effective projected area)
Light fixtures or luminaires are rated in EPA (effective projected area stated in square feet) that refers to the apparent wind profile of a fixture or object based on its’ geometric shape. For example, a round fixture being more streamlined has a lower EPA than a flat sided fixture of the same silhouette. For convenience, poles are rated in terms of their EPA capacity at several wind speeds. (80, 90, 100 and 110 mph)

EPA = Actual Wind Silhouette of an Object x Cd.

• MH (mounting height in feet)
The height at which a fixture is mounted measured from the pole base, not the length of the pole.
For example, floodlights may be mounted on brackets which may locate the fixtures above the top of the pole.

• OTM (over-turning bending moment in foot-pounds)
The bending moment (force times distance) caused by the wind force acting on the pole and fixtures, which tend to topple the pole or foundation. See Figure 7 on Page 7.

• CSR (combined stress ratio)
The ratio of the applied stresses imposed on a pole to the allowed stresses. These would include the bending stress (due to the OTM), shear and torsion stresses, and the axial stresses (from pole and luminaire weights). The combination of all these stresses shall not exceed a CSR value of 1.0.

• Torsion
Twisting forces on a pole caused by the location of fixtures times the horizontal distance as measured from the centerline of the pole (measured in pound-feet).

• Vibration
A condition which may occur under certain wind conditions causing the pole to vibrate.
There are several modes of vibration. Vibration may cause fatigue stresses severe enough to eventually cause damage to the pole and/or luminaire. See Figure 4 on Page 5.

• Pole geometry
The dimensional and physical shape of the pole.
The basic characteristics are height, shape (round and square cross sections), diameter, (or square size), wall thickness, taper (if any), material, and weight. When combined with different loadings of luminaires and brackets, the same pole will exhibit different vibration characteristics.
2. Factors affecting pole selection

It is advisable to create a work sheet and list all the required data in order to determine the pole requirements. See Data work sheet for poles on Page 8.

- **Mounting height (MH)**
 Usually determined by the lighting survey, which will also include the number of poles, luminaire model number(s) and the quantity of luminaires per pole.

- **Luminaire selection**
 The type of luminaire model may be determined by the lighting survey or recommended by a lighting consultant. Note should be taken as to its EPA, weight, mounting method, (side mount, top mount, floodlight brackets etc.) and the distance from the centerline of the pole to the luminaire center.

 Note: The EPA values for Eaton luminaires and poles are denoted on specification sheets.

- **Brackets and arms**
 Brackets, when used, also have weight and EPA ratings and should be listed.

- **Wind speed (in mph)**
 It is critical that the proper wind speed be determined for the job site. For convenience, an isotach wind map has been included in this document Section 9 on Page 9. This map is based on the 1994 AASHTO code and the ASCE 7-93 (fastest mile) wind map. Should the job site fall near or between two wind zones, the higher value shall be used. The ’50 year mean recurrence interval’ wind map is recommended. In ‘special wind regions’, local authorities should be consulted for the correct wind speed data.

 When a customer specifies or requests a wind speed requirement other than from the ASCE 7-93 (fastest mile) wind map, it should be noted as to the source of the wind speed. Other wind maps have been produced by the ASCE, and it is important that this is known in order to apply the correct wind force formulas, such that correct pole size can be selected. For more information, see Commentary, Wind maps and wind pressure formulas on Page 7.

- **Terrain and special wind areas**
 Flat and open terrain may cause wind induced pole vibrations that may require special attention. In ‘special wind zones’ such as mountain passes where hills and local topography may create a funnel affect, or other anomalies, it would be advisable to contact local authorities for wind speed values. For more information see Section 7 on Page 7.

- **Pole material**
 The designer or owner may select the pole material to be used. Common materials are steel, aluminum and fiberglass, with steel being the most common. Poles are also made from concrete, cast iron and wood.

- **Pole shape and style**
 The most common shapes used for poles are round and square in cross-section. Poles may also be tapered. Some customers may request special designs such as ornamental and ‘nostalgia’ period poles.

- **Height above grade**
 The elevation distance from grade to the pole base (example, locations on top of parking decks or on a bridge). The height above grade is important since the wind velocity increases with elevation. When poles are mounted above grade, please contact the factory for assistance.

- **Environment**
 Consideration should be given to job sites near coastal areas (i.e. salt water corrosion). Sewage treatment plants may also have corrosive conditions. These conditions may require the need for special finishes and coatings.

- **Finish and color**
 Generally the powder coat finishes used today are excellent for most environments due to their endurance and color retention. The ‘Bronze’ color is the most common, but a variety of other colors are available. See the color chart or consult your lighting representative at Eaton for assistance.

- **Auxiliary lighting**
 Frequently, besides general purpose area lighting, poles may also be used for special task lighting applications such as building or sign illumination. These lights may be mounted at various locations on the pole. The EPA, quantity and MH of these lights should also be entered on the Data Work Sheets for Poles Sheet. Consult your lighting representative at Eaton for assistance.

- **Special loadings**
 Auxiliary equipment, such as cameras, banners, signs, pennants, speakers, or holiday decorations are not to be installed on poles without the consent of Eaton’s lighting division. Please contact the factory or a representative and provide the area, size, weight and the pole location of these items such that a pole of sufficient size can be recommended. Consult your lighting representative at Eaton for assistance in non-standard applications.

- **Special requirements**
 For special engineering codes, breakaway requirements, Tbases, CCTV applications with lighting fixtures, and bridge mounting locations, please consult your lighting representative at Eaton for assistance.

Pole selection examples

(See Data work sheet for poles on Page 8)

Example 1

<table>
<thead>
<tr>
<th>Job name</th>
<th>Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest mall</td>
<td>AAA lighting</td>
</tr>
</tbody>
</table>

Job location

- Raleigh NC

Luminaire model

- Prevail

Quantity/orientation

- 2 @ 180 degrees

Pole height

- 30 ft.

Luminaire mounting height (MH)

- 29.5 ft.

Pole style

- Square straight steel (SSS)

Wind speed

- 90 mph

Use wind map ASCE 7 93 (fastest mile) with a 1.3 gust factor applied

<table>
<thead>
<tr>
<th>Luminaire EPA (each) sq. ft.</th>
<th>Luminaire weight (each) lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>28</td>
</tr>
</tbody>
</table>
There are strong arguments for selecting poles with sufficient EPA capacities. The cost differential of a slightly larger pole is small when compared to the overall cost of the in-place installation. In addition to safety margins, capacity is left for future (additional) luminaries and decorations.

Example 2

Job name
Hoosier mall

Customer
BBB lighting

Job location
Indianapolis IN

Luminaire model
Acura, large (ALF)

Quantity/orientation
2 mounted on a T2B floodlight bracket

Pole height
35 ft.

Luminaire mounting height (MH)
37 ft.

Pole style
Round tapered steel (RTS)

Wind speed
90 mph

(Use wind map ASCE 7-93 (fastest mile) with a 1.3 gust factor applied)

Luminaire EPA (each)
3.7 sq. ft.

Luminaire weight (each)
71 lbs.

There are strong arguments for selecting poles with sufficient EPA capacities. The cost differential of a slightly larger pole is small when compared to the overall cost of the in-place installation. In addition to safety margins, capacity is left for future (additional) luminaries and decorations.

3. Anchor bolts and foundations

3.1 Anchor bolts

Anchor bolts are the most commonly used method to secure poles to concrete foundations. Anchor bolts supplied by Eaton are specifically manufactured for pole foundations and are of a diameter and length for the particular pole as listed in the catalog. Other manufacturers’ or existing anchor bolts should not be used without performing a thorough engineering analysis.

3.2 Bolt circles

Before pouring a concrete foundation, it is of utmost importance that the anchor bolt circle template conforms to the bolt circle of the pole base. See Figure 1. Likewise the same is true for ‘precast’ foundations. Also, radial orientation of the anchor bolts relative to the hand hole and mounting orientation of the luminaires is critical.
3.3 Anchor bolt projection (BP)
The height the anchor bolt protrudes above the concrete surface.
The anchor bolt projection should be checked. Too little projection,
and the pole may not be properly secured; too much and the bolts
may be subject to unwanted bending stresses. In addition, the base
cover may not fit properly. Consult the catalog for the correct anchor
bolt projection. See Figure 2 on Page 3.

3.4 Concrete foundation
The concrete foundation’s purpose to support the pole (under the
wind loads). It will have a number of steel reinforcing bars of a size
to prevent cracking and/or failure of the concrete. The dimensions
of the foundation should be large enough for the soil to resist the
OTM and other loads. Small, undersized foundations may result in
the foundation rotating or leaning. See Figure 3. The foundation will
also have electrical conduit(s) to provide power for the luminaire.
If more than one conduit is used, it is important to keep the
conductors clustered in the center of the bolt circle as indicated
on the template, with minimum protrusion above the surface of
the foundation. See Figure 2 on Page 3. Concrete foundations
must be designed by a qualified engineer with knowledge of local
soil conditions. Eaton can provide the loading conditions to the
foundation engineers. (OTM, weights, torsion, and shear loads).
Eaton does not provide foundation design services.

3.5 Foundation location considerations
To protect the pole, foundations should have adequate setbacks
from curbs to prevent bumper damage. Within parking lots, large
elevated foundations may be employed. Also consideration should
be given to snow plowing. When poles are laid out in a grid pattern
or in a straight line, it is recommended that they be accurately set as to
be aesthetically pleasing in appearance.

4 Installation
4.1 Assembly
Assembling the poles, brackets, luminaires and wiring is done on
the ground before erection. It is not recommended to erect poles
without the luminaires.

4.2 Leveling and plumbing the poles
When erecting poles, it should be ‘plumb’ (perfectly vertical). This
can be accomplished easily with the leveling nuts and washers
provided. An accurate level is recommended for this operation.

4.3 Tightening anchor bolt nuts
The anchor bolt nuts must be tightened to the torque values as
listed in the pole instruction sheets. A torque wrench is required for
this operation.

4.4 Electrical installation
A qualified electrician is required to perform the electrical installation
in compliance with the National Electrical Code (NEC) and other local
codes which may be required. Proper grounding is a must: an anchor
bolt may not be used as a ground. Wire-ways and entrances shall be
protected so not to chaff or abrade the conductors. There should be
no strain on conductor connections.

4.5 Grout
It is recommended that grout not be used on steel poles or poles
using a base cover.

5. Maintenance
5.1 Visual inspections - structural
Inspections should be conducted periodically to check the poles for
cracks. Although it is rare, cracks should they appear, are usually
located in the vicinity of the base weld. They also may appear around
the hand hole or at the corners of square poles. These cracks may
be the result of vortex shedding vibration which create fatigue
stresses. This rapid flexing of the pole, although small in amplitude,
may, over thousands of cycles, produce small cracks in and around
weldments. In time, these small cracks will continue to ‘grow’ and
propagate until they become sufficiently long to cause the pole to
fail. Cracks may be detected by rust on either side of the crack line.
If cracks are detected, remedial action is required (the removal of all
poles with cracks). Prudent action would be to install dampers in the
remaining poles on the site. See Section 6.7 on Page 7.

5.2 Recheck anchor bolt torques
Rechecking should be done as bolt/nut connections may initially
‘relax’ slightly after the pole has been subject to some wind
loadings. Re-tighten according to the recommended torque values.
Verify that lock washers are installed.

5.3 Covers
Check for missing covers and pole caps and replace as necessary.
Missing handhole covers must be replaced as soon as possible due
to electrical safety concerns.

5.4 Cleanout
The area around and underneath the base should be kept clean of
debris in order to help reduce moisture and minimize corrosion.

5.5 Corrosion and finish
Check the pole for corrosion and deterioration of the finish. Should
there be corrosion or deterioration, take remedial action to correct.

5.6 Inspection frequency
At the minimum, a prudent inspection schedule should be:
• One week after installation
• One month after installation
• One year after installation
• Yearly after that. It also would be advisable to check the installation
after any major wind event.
6. Pole vibration

6.1 Vibration general

Light poles are vertical cantilever structures, and under certain conditions will vibrate, and although rare, the vibration can be severe enough to be harmful. They can vibrate in different modes and at different frequencies. Several types of outside forces may ‘excite’ the pole and start the pole to vibrate. Natural wind is the most common. Poles mounted on bridges may be subject to traffic-induced vibrations from the deck ‘bounce’. Wind blasts from passing trailer trucks may also start a pole to vibrate. Once the excitation force is removed the vibration ‘decays’ and the pole stops vibrating.

Vibration in poles of different geometry decay at different rates. Tall slender poles tend to vibrate more easily and ‘decay’ more slowly. This rate of vibration decay is called the dampening coefficient or damping ratio. When certain conditions exist, poles will vibrate and may sustain the vibration for long periods of time. This is due to the fact that the poles have poor damping properties. See Page 7. Many factors can cause this. These are pole geometry, prevailing winds, site terrain, and type and weight of the luminaire(s).

Because of the complex combinations and interactions of these variables, it is difficult to predict when, where and which poles will vibrate. However, experience has shown under one or more of the following conditions, poles are more prone to vibrate. When severe enough, pole and/or luminaires failures can occur.

- Open terrain with little or no trees or buildings to break up the wind
- Steady prevailing winds in the 8 to 25 mph range, which often occur in the mid-west and prairie states
- Elevated and exposed areas such as parking decks, bridges and overpasses
- Mountain passes
- Poles lengths 20 feet and over
- Poles with very light weight luminaires (or no luminaires)

6.2 Effects of vibration

Vibration and its resulting lateral displacement will result in a stress to the pole. The stress is at its maximum at the base of the pole; the greater the movement or displacement, the greater the stress. When these stresses are continually repeated, they are called cyclic or fatigue stresses. These stresses, if sufficient in magnitude, and when applied over time, may lead to stress cracks in the pole. (Pole vibration may also lead to premature failure to lamps and components as well). These pole stresses are amplified at the base plate connection and handholes. (They are called stress concentration points or stress risers). Square poles are more susceptible to fatigue stress cracking due to the high stress concentrations in the corners. Following the initiation of a stress crack or fissure, the crack will continue to grow until the pole is no longer capable of withstanding even a modest wind event.

Pole vibration stress levels are usually not severe enough to cause cracks or failures.

6.3 First mode vibration

First mode vibration (sway) starts at moderate wind speeds. Its frequency is low (about 1 cycle per second). The maximum deflection occurs at the top of the pole and is rarely a problem. See Figure 4. However, under very high gusting conditions, more severe oscillation may result. When gusts occur at very high wind speeds, (50 to 70 mph range) violent ‘whipping’ and ‘pulsing’ may occur, producing violent motion, resulting in high stresses at the pole base. Gale force winds and cold weather fronts with high wind velocities may be accompanied by heavy wet snow. This type of ‘perfect storm’ can be very destructive.

There have been rare incidences where large populations of poles have failed during a single storm event. Fortunately, these localized weather conditions do not occur frequently and are usually short-lived.

6.4 Second mode vibration

Of first or second mode, second mode vibration is of the most concern. Second mode vibration is caused by a phenomenon known as vortex shedding. See Figure 4. Vortex shedding is the small eddies alternately spinning off the sides of the pole (a canoe paddle creates a vortex at the sides of the blade). Because there is
a pressure collapse when a vortex is created, the pole is driven in the direction of the vortex. When that vortex spins off into the wind stream, another vortex forms on the opposite side, causing the pole is driven toward that side. This continues alternately and the pole is forced back and forth, 90 degrees to the wind stream. See Figure 5. Vortex shedding frequency increases with wind velocity. When the vortex shedding frequency approaches the poles’ natural second mode frequency, they become ‘locked-in’ and the pole vibrates. This resonant condition occurs at wind speed between 8 to 25 mph with frequencies of 3 to 8 cycles per second. Unlike first mode vibration, the location of second mode maximum displacement occurs at or near the middle of the pole. See Figure 4 on Page 5.

Although these stresses are low, stress cycles can build rapidly into the thousands and millions over time. If the combination of stress levels and number of cycles are sufficient, they may exceed the metal’s fatigue stress ‘endurance limit’.

The areas of concern are the base plate weld, areas in the heat-affected-zones (HAZ) of welds, and corners of square poles, handholes, etc. Fatigue cracks may develop and over time grow to the point where the pole fails.

Nearby trees, buildings, and wind velocities over 25 mph create turbulence and disrupt the laminar wind flow patterns which cause vortex shedding vibrations.

6.5 Suggestions for avoiding vibration

It is best to check the job site prior to ordering a pole. Poles located in flat open terrain or exposed locations (bridge decks, parking garages, etc.) where there are prevailing winds in the 8 to 25 mph range may experience second mode vibration. Where the site conditions indicate the poles may be subject to prolonged periods of vibration, round poles would be a better choice than square poles. Round tapered poles would be a better choice than straight poles, and steel poles would be a better choice than aluminum.

Larger diameter poles with higher EPA capacities than required would be a better choice. These poles are stiffer and have better dampening characteristics. Luminaires should be installed at the time the poles are installed.

6.6 How to detect vibration

In first mode, the pole merely sways and can be easily observed. This is usual and not damaging to the pole. Under high wind and gusting conditions, violent pole top displacement and whipping may occur and can be dangerous.

Second mode vibration caused by vortex shedding may be harder to detect. The amplitude of motion, located near the center of the pole, may be small and difficult to observe. A knowledgeable investigator should be able to assess the situation and will need to be at the job site when winds are blowing in the 8 to 25 mph range to witness the condition. In addition to seeing the motion, one should be able to ‘feel’ the vibration. By placing a hand on the pole, one may be able to detect the vibration. There also may be some noise such as conductors slapping the inside of the pole. More sophisticated detection can be accomplished by the use of accelerometers and chart recorders.

All pole vibration is not destructive, but when detected the poles should be monitored on a regular basis for cracks. For poles that are significantly and/or continually vibrating, vibration dampers should be installed. See Figure 6.
6.7 Vibration dampers
When a pole by itself exhibits poor damping characteristics, a vibration damper may be required. Wind energy is the driving force of vibration. This energy needs to be dissipated by the addition of a damper. There are a variety of methods and damping devices employed to reduce vortex shedding vibration. These include mass-tuned vibration dampers, inertia dampers (Stockbridge), viscous dampers and impact dampers. Internal chains suspended from the top of the pole may reduce vibration (however, the size and length of the chain will need to be determined). All dampers function as energy absorbers, canceling the motion of the pole and thus reducing or eliminating vibration.

Dampers may be factory installed for built-to-order poles. There are other types of dampers suited for field installation when required. Some types of field installed dampers are mounted on the exterior of the pole and may detract from its appearance. “Fabreeka’ base pads and washers (energy absorbing fabric) are used on bridge and structure mounts. See Figure 7.

7. Commentary

- Cd (coefficient of drag)
An object’s shape and dimensions determines its Cd. Flat signs, for example, may have Cds as high as 1.7, while racing cars may have Cds in the range of 0.30 to 0.35. Airplanes have even lower Cds, as low as .05. Nature has provided birds and porpoises with extremely low Cds. Luminaire designers are aware of wind drag and EPAs and strive to keep luminaire profiles small and streamlined.

- Vibration
Some examples of structural vibration can be found in two well-known cases. The first is the famous Tacoma Narrows Bridge, also known as ‘Galloping Gertie’. Built in 1940, it collapsed in spectacular fashion four months after its opening, as captured on film. The subsequent investigation of this failure led to the study of wind-induced vibration. The findings helped engineers to gain more understanding of fluid dynamics and wind induced vibration. As a result, a similarly designed bridge in Maine was spared by the addition of structural elements and fairings. The second example is the John Hancock Tower in Boston. In this instance vibration was causing windows to pop out, crashing to the street below. Wind induced vibration was causing the 800 foot building to torque as well as flex. The solution involved the installation of two 300 ton mass tuned vibration dampers on the 58th floor. Recently constructed slender high rise buildings in New York City have large damper systems.

- Wind speed
Over the years, the American Society of Civil Engineers (ASCE) has developed several editions of wind maps. The most used are:

<table>
<thead>
<tr>
<th>Wind map</th>
<th>Wind pressure formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCE 7-93</td>
<td>Wp = .00256 * (1.3 * V)²</td>
</tr>
<tr>
<td>ASCE 7-05</td>
<td>Wp = .00256 * (1.3 * 70)² = 21.2 psf</td>
</tr>
<tr>
<td>ASCE 7-10</td>
<td>Wp = .00256 * 1.14 *</td>
</tr>
<tr>
<td>ASCE 7-05</td>
<td>Wp = .00256 * 1.14 * (90)² = 23.1 psf</td>
</tr>
</tbody>
</table>

Note: Note that although the wind speeds have increased for the latest ASCE wind maps, the wind pressure (Wp) values have virtually stayed the same. When using the appropriate wind pressure formula with the associated wind map, the pole will have the same EPA ratings.

Figure 7.

Once the loadings and forces are known, a proper size pole can be selected. Errors will occur when a wind speed from one map is misused with a formula associated with a different map.

Example: From the Applied Technology Council ‘Wind by Location’
For Albany, New York
ASCE 7-93 wind map (fastest mile) = 70 mph
ASCE 7-05 wind map (3 second gust) = 90 mph
ASCE 7-10 wind map (3 second gust) = 115 mph (risk category II)

ASCE = American Society of Civil Engineers
Wp = Wind pressure in psf (pounds per square foot)
Mass density of air = .00256 slugs/ cu. ft.
Gust coefficient = 1.3
Gust effect factor = 1.14
V = mph wind speed
8. Data work sheet for poles (suggested)

To ensure the best quality service when ordering/ quoting an Eaton pole the following information should be collected. If, at any point, you have a question or need further assistance please do not hesitate to contact Eaton lighting division technical support specialists.

Project: ___

Location (city, state & zip code): _______________________________

Wind zone per isotach wind map: ____________________________
(If location is between zones chose the higher value)

Special wind zone or terrain requirements: ______________________
(Please indicate whether local codes specify special requirements or whether special terrain conditions exist such as bridge, overpass, parking deck, airport, mountain/foothill, open field or other areas with low steady state winds).

Pole catalog logic: __
Or if catalog logic is not known choose from the following:

Style: ___Square straight ___Round straight ___Round tapered ___Other

Base style: Standard plate base ____Special____

Material: ___Steel ___Aluminum

Mounting height: ___

Height from grade to base of pole shaft: ______________________

Luminaire mounting configuration

Luminaire catalog logic: ______________________________________

Luminaire mounting: ___Single arm ___2 @ 90° arm ___2 @ 180° arm
___3 @ 90° Arm ___3 @ 120° arm
___4 @ 90° arm ___Yoke ___Spider ___Other

Luminaire effective projected area (EPA): ________________________

Luminaire weight: __

Accessory/bracket mounting configuration: ______________________

Accessory/bracket catalog logic: ________________________________

Accessory/bracket effective projected area (EPA): ________________

Accessory/bracket weight: ____________________________________

Options: ___A=1/2" hub ___B=3/4" hub ___C=Convenience outlet
___D=EPA ___E=GFI convenience outlet ___F=Vibration pad
___G=Ground lug ___H=Additional hand hole
___J=Cable support ___V=Vibration damper
___L=Drilled for bumper glitter

Anchorage: ___New (Add appropriate anchor bolts and templates to your order)
___Existing (Field measure existing bolt dimensions)

Bolt circle: __

Bolt projection (BP): ___

Bolt diameter (D): ___

Bolt length* (AB): ___

* If known.

Use EPA (at pole top) Use EPA (2' above pole top)
9. 1994 AASHTO Isotach wind map (ASCE 7-93 “fastest mile” wind map)

The 50-year mean recurrence Isotach wind map has been included in this catalog in order to aid in the selection of a pole with regard to its geographic location. Although a less stringent 25-year mean recurrence map is sometimes used by other pole suppliers, it is our belief that the added measure of assurance offered in the use of this map deems it more desirable. Where unusual wind conditions exist (mountains, natural terrains acting as funnels, hurricane regions shown as 110 mph regions) it is advisable to contact your lighting representative at Eaton for further consultation.
Index

1. Light poles ... 1
 1.1 General ... 1
 1.2 Function ... 1
 1.3 Definitions ... 1
2. Factors affecting pole selection 2
3. Anchor bolts and foundations 3
 3.1 Anchor bolts .. 3
 3.2 Bolt circles .. 3
 3.3 Anchor bolt projection .. 4
 3.4 Concrete foundations .. 4
 3.5 Foundation location considerations 4
4. Installation ... 4
 4.1 Assembly ... 4
 4.2 Leveling and plumbing the pole 4
 4.3 Tightening anchor bolts .. 4
 4.4 Electrical installation ... 4
 4.5 Grout .. 4
5. Maintenance ... 4
 5.1 Visual inspections ... 4
 5.2 Rechecking anchor bolt nut torques 4
 5.3 Covers .. 4
 5.4 Clean out ... 4
 5.5 Corrosion and finish .. 4
 5.6 Inspection frequency .. 4
6. Pole vibration ... 5
 6.1 Vibration general ... 5
 6.2 Effects of vibration .. 5
 6.3 First mode vibration .. 5
 6.4 Second mode vibration ... 5
 6.5 Suggestions for avoiding vibration 6
 6.6 How to detect vibration ... 6
 6.7 Vibration dampers ... 7
7. Commentary .. 7
8. Data work sheet for poles (suggested) 8
9. 1994 AASHTO Isotach Wind Map 9

About Eaton

Eaton delivers a range of innovative and reliable indoor and outdoor lighting solutions, as well as controls products specifically designed to maximize performance, energy efficiency and cost savings. Eaton lighting solutions serve customers in the commercial, industrial, retail, institutional, residential, utility and other markets. Eaton’s electrical business is a global leader with expertise in power distribution and circuit protection; backup power protection; control and automation; lighting and security; structural solutions and wiring devices; solutions for harsh and hazardous environments; and engineering services.

Eaton is a power management company with approximately 97,000 employees. The company provides energy-efficient solutions that help our customers effectively manage electrical, hydraulic and mechanical power more efficiently, safely and sustainably. Eaton sells products to customers in more than 175 countries. For more information, visit www.eaton.com.

Sources

• Alcoa Structural Handbook, (1960), A Design Manual for Aluminum, Aluminum Company of America, Pittsburgh PA
• Delong Zuo, Field Observations of Wind Induced Lighting Poles Vibration, Department of Civil and Environmental Engineering, Texas Tech, M.S., 1023, Lubbock TX 79409
• Hoerner, Sighard, Fluid-Dynamic Drag, Published by Hoerner Fluid Dynamics
• Sougata Roy, High-Performance Computing Toughens Slender Sign Structures, Lehigh University Newsletter August 31, 2009, Lehigh University ATLSS Center, Bethlehem, PA

Warning

Customer is responsible for engineering analysis to confirm pole and fixture compatibility for all applications. Before installing, make sure proper anchor bolts and templates are obtained. The use of unauthorized accessories such as banners, signs, cameras or pennants for which the pole was not designed voids the pole warranty and may result in pole failure causing serious injury or property damage. Information regarding total loading capacity can be supplied upon request. The pole warranty is void unless poles are used and installed as a complete pole and luminaire combination. This warranty specifically excludes failure as the result of a third party act or omission, misuse, unanticipated uses, fatigue failure or similar phenomena resulting from induced vibration, harmonic oscillation or resonance associated with movement of air currents around the product.