D2 W MDME 2400 Series
Wireless Ethernet Modem

SAVE THESE INSTRUCTIONS FOR FUTURE REFERENCE

⚠️ WARNING

To avoid the risk of fire and electric shock, this product should be installed by a qualified electrician only.

⚠️ WARNING

To avoid electric shock: be certain power is OFF before and during installation and maintenance.

⚠️ ATTENTION

Incorrect termination of supply wires may cause internal damage and will void warranty. To ensure your D2 W MDME 2400 enjoys a long life, **double check ALL your connections with this Instruction Sheet** before turning the power on.

⚠️ CAUTION

For continued protection against risk of fire, replace the internal module fuse only with the same type and rating.

⚠️ CAUTION

Antennas used with this device must be installed to provide a separation distance of at least 20 cm from all persons to satisfy RF exposure compliance.

DO NOT:

- Operate the transmitter when someone is within 20 cm of the antenna;
- Operate the transmitter unless all RF connectors are secure and any open connectors are properly terminated;
- Operate the equipment near electrical blasting caps or in an explosive atmosphere.
Important Notice

Cooper Crouse-Hinds products are designed to be used in industrial environments by experienced industrial engineering personnel with adequate knowledge of safety design considerations.

Cooper Crouse-Hinds radio products are used on unprotected, license-free radio bands with radio noise and interference. The products are designed to operate in the presence of noise and interference; however, in an extreme case, radio noise and interference could cause product operation delays or operation failure. Like all industrial electronic products, Cooper Crouse-Hinds products can fail in a variety of modes due to misuse, age, or malfunction. We recommend that users and designers design systems using design techniques intended to prevent personal injury or damage during product operation, and provide failure tolerant systems to prevent personal injury or damage in the event of product failure. Designers must warn users of the equipment or systems if adequate protection against failure has not been included in the system design. Designers must include this Important Notice in operating procedures and system manuals.

These products should not be used in non-industrial applications or life-support systems without consulting Cooper Crouse-Hinds first.

1. A radio license is not required in some countries provided the module is installed using the aerial and equipment configuration described in the D2 W MDME 2400 Installation Guide. Check with your local distributor for further information on regulations.

2. Operation is authorized by the radio frequency regulatory authority in your country on a non-protection basis. Although all care is taken in the design of these units, there is no responsibility taken for sources of external interference. Systems should be designed to be tolerant of these operational delays.

3. To avoid the risk of electrocution, the aerial, aerial cable, serial cables, and all terminals of the D2 W MDME 2400 module should be electrically protected. To provide maximum surge and lightning protection, the module should be connected to a suitable earth, and the aerial, aerial cable, serial cables, and module should be installed as recommended in the Installation Guide.

4. To avoid accidents during maintenance or adjustment of remotely controlled equipment, all equipment should be first disconnected from the D2 W MDME 2400 module during these adjustments. Equipment should carry clear markings to indicate remote or automatic operation. E.g. "This equipment is remotely controlled and may start without warning. Isolate at the switchboard before attempting adjustments."

5. The D2 W MDME 2400 module is not suitable for use in explosive environments without additional protection.
CONTENTS

CHAPTER ONE INTRODUCTION ... 5
1.1 NETWORK TOPOLOGY .. 5
1.2 GETTING STARTED QUICKLY .. 8

CHAPTER TWO INSTALLATION ... 9
2.1 GENERAL .. 9
2.2 ANTENNA INSTALLATION ... 9
2.2.1 Dipole and Collinear Antennas ... 11
2.2.2 Directional Antennas ... 12
2.3 POWER SUPPLY ... 13
2.4 SERIAL CONNECTIONS .. 13
2.4.1 RS232 Serial Port .. 13
2.4.2 RS485 Serial Port .. 14
2.5 DISCRETE (DIGITAL) INPUT/OUTPUT ... 15
2.5 DISCRETE (DIGITAL) INPUT/OUTPUT ... 16

CHAPTER THREE OPERATION ... 17
3.1 START-UP ... 17
3.2 SELECTING A CHANNEL .. 19
3.3 CONFIGURING THE UNIT FOR THE FIRST TIME 20
3.4.1 Set PC to Same Network as D2 W MDME 2400. 20
3.4.2 Set D2 W MDME 2400 to Same Network as PC 23
3.4 NETWORK CONFIGURATION .. 25
3.5 ETHERNET DATA .. 27
3.6 NORMAL OPERATION ... 27
3.7 RADIO CONFIGURATION ... 29
3.8 SPANNING TREE ALGORITHM / REDUNDANCY 31
3.9 MULTIPLE AP REPEATER MESH NETWORK 32
 WDS Configuration ... 38
3.10 ROUTING RULES .. 40
3.11 WIRELESS MESSAGE FILTERING ... 42
3.12 SERIAL PORT CONFIGURATION ... 44
3.13.1 RS232 PPP Server ... 44
3.13.2 Serial Gateway .. 49
3.13.3 Modbus TCP to RTU Gateway .. 50
3.13 DIGITAL INPUT/OUTPUT ... 52
3.14 MODBUS I/O TRANSFER ... 52
3.15 MODULE INFORMATION CONFIGURATION 56
3.16 REMOTE CONFIGURATION .. 57
3.17 CONFIGURATION EXAMPLES ... 57
CHAPTER FOUR DIAGNOSTICS ... 62
4.1 DIAGNOSTICS CHART ... 62
4.2 DIAGNOSTIC INFORMATION AVAILABLE 63
 4.2.1 Connectivity .. 63
 4.2.2 Monitor Communications .. 64
 4.2.3 Statistics .. 65
 4.2.4 Network Traffic Analysis ... 65
4.3 TESTING RADIO PATHS ... 65
4.4 UTILITIES .. 66
 4.4.1 Ping ... 66
 4.4.2 IPCONFIG ... 68
 4.4.4 Route .. 69

CHAPTER FIVE SPECIFICATIONS ... 71

APPENDIX A FIRMWARE UPGRADE .. 73

APPENDIX B GLOSSARY ... 79

APPENDIX C EUROPEAN COMPLIANCE ... 85
Chapter One

INTRODUCTION

The D2 W MDME 2400 Industrial Wi-Fi Wireless Ethernet module provides wireless connections between Ethernet devices or Ethernet wired networks (LANs). It complies with the IEEE 802.11b standard. The D2 W MDME 2400 has an internal 2.4 GHz direct sequence spread spectrum (DSSS) wireless transceiver, which can be used without a radio license in most countries. Users can select one of 11 x 5 MHz wide channels, with the first channel centered at 2.412 GHz.

Note that regulations in North America and part of Europe permit all 11 channels to be used in these countries. Please check with your Cooper Crouse-Hinds representative for the permitted channel usage in your country.

The D2 W MDME 2400 unit also provides two serial connections as well as the Ethernet connections. It is possible to use all three data connections concurrently, allowing the D2 W MDME 2400 to act as a Device Server. Wireless connections can be made between serial devices and Ethernet devices; however, appropriate driver applications are required in the host devices to handle the different data format. The D2 W MDME 2400 does provide connection functionality between serial “Modbus RTU” devices and Ethernet “Modbus TCP” devices.

The D2 W MDME 2400 is available in two models with different RF power:

- D2 W MDME 2400 1 100mW of RF power
- D2 W MDME 2400 3 300mW of RF power

Note that European regulations do not permit more than 100mW of RF power to be used. Operation in France, Italy, Luxembourg, Norway, and the Russian Federation is limited to indoor use only. Refer to Appendix C for clarification. In the U.S., Canada, and Australia, up to 1W of RF power may be generated. In other countries, please check with your Cooper Crouse-Hinds representative.

The D2 W MDME 2400 has a standard RJ45 Ethernet connection which will operate at up to 100Mbit/sec. The module will transmit the Ethernet messages on the wireless band at rates between 1 and 11 Mbit/sec.

1.1 Network Topology

The D2 W MDME 2400 is an Ethernet device, and must be configured as part of an Ethernet network. Each D2 W MDME 2400 must be configured as:

- An “Access Point” or a “Client,” and
- A “Bridge” or a “Router.”
You can also connect to the D2 W MDME 2400 via a RS232 or RS485 serial port using serial server or PPP (point-to-point) protocol. PPP allows the D2 W MDME 2400 to connect serial communications into the Ethernet network.

Access Point versus Client.

The Access Point unit acts as the “wireless master” unit. The Access Point sets up the wireless links to the Client units and controls the wireless communications. The first diagram shows two Ethernet devices being linked. One D2 W MDME 2400 is configured as an Access Point and one as a Client - in this example, it doesn’t matter which unit is the Access Point.

The second diagram shows an existing LAN being extended using D2 W MDME 2400s. In this example, the Access Point should be configured at the LAN end – although, the wireless link will still work if the Client is at the LAN end.

An Access Point can connect to multiple Clients. In this case, the Access Point should be the “central” unit.

An Access Point could be used as a “Repeater” unit to connect two D2 W MDME 2400 Clients which do not have direct reliable radio paths.

Multiple Access Points can be set up in a “mesh” network to provide multiple repeaters.
Bridge versus Router.

Each D2 W MDME 2400 is configured with an IP address for the Ethernet side, and another for the wireless side.

A **Bridge** connects devices within the same Ethernet network - for example, extending an existing Ethernet LAN. For a Bridge, the IP address for the wireless side is the same as the Ethernet side.

A **Router** connects devices on different LANs. The IP addresses for the Ethernet and wireless sides are different.

In the above example, the wireless link is part of LAN A, with the Client unit acting as a Router between LAN A and LAN B. Alternatively, the Access Point could be configured as a Router - the wireless link is then part of LAN B.

If more than two Routers are required within the same radio network, then routing rules may need to be configured (refer to Section 3.11, “Routing Rules,” for further details).

There is no limit to the number of Bridges in the same network – although, there is a limit of 128 Client units linked to any one Access Point.
1.2 Getting Started Quickly

Most applications for the D2 W MDME 2400 require little configuration. The D2 W MDME 2400 has many sophisticated features; however, if you don’t require these features, this section will allow you to configure the units quickly.

First, read Section 2, “Installation.” The D2 W MDME 2400 requires an antenna and a power supply.

- Power the D2 W MDME 2400 and make an Ethernet connection to your PC (for further information on how to do this, refer to Section 3.4).
- Set the D2 W MDME 2400 address settings as per Section 3.4.
- Save the configuration - the D2 W MDME 2400 is now ready to use.

Before installing the D2 W MDME 2400, bench test the system. It is a lot easier to locate problems when the equipment is all together.

There are other configuration settings which may or may not improve the operation of the system. For details on these settings, refer to Section 3.
Chapter Two

2.1 General

The D2 W MDME 2400 module is housed in a rugged aluminium case, suitable for DIN rail mounting. Terminals will accept wires up to 2.5 sqmm (12 gauge) in size.

All connections to the module must be SELV. Normal 110-250V mains supply should not be connected to any terminal of the D2 W MDME 2400 module. Refer to Section 2.3, “Power Supply.”

Before installing a new system, it is preferable to bench test the complete system. Configuration problems are easier to recognize when the system units are adjacent. Following installation, the most common problem is poor communications caused by incorrectly installed antennas, radio interference on the same channel, or the radio path being inadequate. If the radio path is a problem (i.e. path is too long or obstructions are in the way), then higher performance antennas or a higher mounting point for the antenna may rectify the problem. Alternatively, use an intermediate D2 W MDME 2400 module as a repeater.

The foldout sheet D2 W MDME 2400 Installation Guide provides an installation drawing appropriate to most applications. Further information is detailed below.

Each D2 W MDME 2400 module should be effectively earthed via the "GND" terminal on the D2 W MDME 2400 module - this is to ensure that the surge protection circuits inside the D2 W MDME 2400 module are effective.

2.2 Antenna Installation

The D2 W MDME 2400 module will operate reliably over large distances. The distance which may be reliably achieved will vary with each application - depending on the type and location of antennas, the degree of radio interference, and obstructions (such as buildings or trees) to the radio path.

The maximum range achievable depends on the regulated RF power permitted in your country, and whether you use separate transmit and receive antennas. With a single antenna, 5 km (3 miles) can be achieved in the U.S., Canada, and Australia (4W ERP), and 1 km in Europe (100mW ERP). With separate transmit and receive antennas, more than 10 km (6 miles) can be achieved in the U.S., Canada, and Australia, and more than 5 km in Europe.

To achieve the maximum transmission distance, the antennas should be raised above intermediate obstructions so the radio path is true “line-of-sight.” The modules will operate reliably with some obstruction of the radio path, although the reliable distance will be reduced. Obstructions which are close to either antenna will have more of a blocking effect than obstructions in the middle of the radio path. The D2 W MDME 2400 modules provide a diagnostic feature which displays the radio signal strength of transmissions (refer to the Diagnostics section for more information).
Line-of-sight paths are only necessary to obtain the maximum range. Obstructions will reduce the range, however, may not prevent a reliable path. A larger amount of obstruction can be tolerated for shorter distances. For short distances, it is possible to mount the antennas inside buildings. An obstructed path requires testing to determine if the path will be reliable - refer to Section 6 of this Instruction Sheet.

Where it is not possible to achieve reliable communications between two D2 W MDME 2400 modules, then a third D2 W MDME 2400 module may be used to receive the message and re-transmit it. This module is referred to as a repeater. This module may also have a host device connected to it.

The D2 W MDME 2400 unit has two antenna connections at the top of the module, allowing two antennas to be fitted to the unit. The left connector (looking at the front) labeled “RX” is connected only to the internal wireless receiver. The right connector labeled TX/RX is connected to both the transmitter and receiver.

Note: when only one antenna is used, it must be connected to the right TX/RX connector.

Plant and Factory Installations.

Most installations in industrial plants and factories use single omni-directional antennas. Installations can suffer from “multi-path fading” effects where multiple reflected radio signals adversely affect the signal strength. This can be checked by moving the antenna a short distance (10 cm or 4 inches) - if the signal increases significantly, then there are multi-path effects.

In a “static” installation, where the radio path is not changing, moving an antenna to the position of maximum signal solves this problem. However, where the radio path changes because the D2 W MDME 2400 is mounted on moving equipment, or if there is moving equipment in the area, then the solution is to use two antennas. Because the two connectors are separated, the RF signal at each connector will be different in the presence of multi-path fading. The D2 W MDME 2400 unit will automatically select the higher RF signal.

Note that directional antennas are not normally used in plant and factory installations.

Line-of-sight Installations.

In longer line-of-sight installations, the range may be increased by using a high gain antenna on the TX/RX connector. However, the gain should not cause the effective radiated power (ERP) to exceed the permitted value. A second higher gain antenna can be connected to the RX connector without affecting ERP - this will increase the operating range, provided the background noise in the area is low.

Antennas.

Antennas can be either connected directly to the module connectors or connected via 50 ohm coaxial cable (e.g. RG58 Cellfoil or RG213) terminated with a male SMA coaxial connector. The higher the antenna is mounted, the greater the transmission range will be; however, as the length of coaxial cable increases, so do cable losses.
The net gain of an antenna/cable configuration is the gain of the antenna (in dBi) less the loss in the coaxial cable (in dB). The maximum net gain of the antenna/cable configuration connected to the TX/RX connector is 0dB in Europe (100mW ERP). In the U.S., Canada, and Australia (4W ERP), the maximum gain is 12dB for the D2 W MDME 2400 3 or 16dB for the D2 W MDME 2400 1. There is no gain restriction for antennas connected to the RX connector.

The gains and losses of typical antennas are:

<table>
<thead>
<tr>
<th>Antenna</th>
<th>Gain (dBi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipole</td>
<td>2</td>
</tr>
<tr>
<td>Collinear</td>
<td>5 or 8</td>
</tr>
<tr>
<td>Directional</td>
<td>10 - 28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cable type</th>
<th>Loss (dB per 10 m / 30 ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG58 Cellfoil</td>
<td>-6</td>
</tr>
<tr>
<td>RG213</td>
<td>-5</td>
</tr>
<tr>
<td>LDF4-50</td>
<td>-1.5</td>
</tr>
</tbody>
</table>

The net gain of the antenna/cable configuration is determined by adding the antenna gain and the cable loss. For example, a 5dBi antenna with 10 meters of Cellfoil has a net gain of -1dB (5dB – 6dB).

Installation Tips.

Connections between the antenna and coaxial cable should be carefully taped to prevent ingress of moisture. Moisture ingress in the coaxial cable is a common cause for problems with radio systems, as it greatly increases the radio losses. We recommend that the connection be taped, first with a layer of PVC tape, then with a vulcanizing tape such as “3M 23 tape,” and finally with another layer of PVC UV stabilized insulating tape. The first layer of tape allows the joint to be easily inspected when troubleshooting, as the vulcanizing seal can be easily removed.

Where antennas are mounted on elevated masts, the masts should be effectively earthed to avoid lightning surges. For high lightning risk areas, surge suppression devices between the module and the antenna are recommended. If the antenna is not already shielded from lightning strike by an adjacent earthed structure, a lightning rod may be installed above the antenna to provide shielding.

2.2.1 Dipole and Collinear Antennas.

A dipole or collinear antenna transmits the same amount of radio power in all directions - as such, they are easy to install and use. The dipole antenna with integral 5 meters (15 feet) cable does not require any additional coaxial cable; however, a cable must be used with the collinear antennas.

Collinear and dipole antennas should be mounted vertically, preferably 30 cm (1 foot) away from a wall or mast to obtain maximum range.
2.2.2 Directional Antennas.

Directional antennas can be:

- A Yagi antenna with a main beam and orthogonal elements;
- A directional radome, which is cylindrical in shape; or
- A parabolic antenna.

A directional antenna provides high gain in the forward direction, but lower gain in other directions. This may be used to compensate for coaxial cable loss for installations with marginal radio path.

Yagi antennas should be installed with the main beam horizontal, pointing in the forward direction. If the Yagi is transmitting to a vertically mounted omnidirectional antenna, then the Yagi elements should be vertical. If the Yagi is transmitting to another Yagi, then the elements at each end of the wireless link need to be in the same plane (horizontal or vertical).
Directional radomes should be installed with the central beam horizontal and must be pointed exactly in the direction of transmission to benefit from the gain of the antenna. Parabolic antennas should be mounted as per the manufacturer’s instructions, with the parabolic grid at the “back” and the radiating element pointing in the direction of the transmission.

Ensure that the antenna mounting bracket is well connected to “ground/earth.”

2.3 Power Supply

The D2 W MDME 2400 module can be powered from a 9 - 30VDC power supply. The power supply should be rated at 1 Amp. The positive side of the supply must not be connected to earth. The supply negative is connected to the unit case internally. The DC supply may be a floating supply or negatively grounded.

The power requirements of the D2 W MDME 2400 unit are 240mA @ 12V or 150mA @ 24VDC. This is inclusive of radio and Ethernet ports active, and serial port plugged in. Transmission current is nominally 350mA at 12V (200mA at 24V) for the 100mW RF unit, and 500mA at 12V (350mA at 24V) for the 300mW RF unit.

A ground terminal is provided on the back of the module. This terminal should be connected to the main ground point of the installation in order to provide efficient surge protection for the module (refer to the Installation Diagram for more information).

2.4 Serial Connections

2.4.1 RS232 Serial Port.

The serial port is a 9-pin DB9 female, and provides for connection to a host device as well as a PC terminal for configuration, field testing, and factory testing. Communication is via standard
RS232 signals. The D2 W MDME 2400 is configured as DCE equipment with the pin-outs detailed below.

Hardware handshaking using the CTS/RTS lines is provided. The CTS/RTS lines may be used to reflect the status of the local unit’s input buffer. The D2 W MDME 2400 does not support XON/XOFF.

Example: cable drawings for connection to a DTE host (a PC) or another DCE hosts (or modem) are detailed above.

DB9 Connector Pin-outs:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Direction</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCD</td>
<td>Out</td>
<td>Data carrier detect –</td>
</tr>
<tr>
<td>2</td>
<td>RD</td>
<td>Out</td>
<td>Transmit Data – Serial Data Output</td>
</tr>
<tr>
<td>3</td>
<td>TD</td>
<td>In</td>
<td>Receive Data – Serial Data Input</td>
</tr>
<tr>
<td>4</td>
<td>DTR</td>
<td>In</td>
<td>Data Terminal Ready -</td>
</tr>
<tr>
<td>5</td>
<td>SG</td>
<td></td>
<td>Signal Ground</td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
<td>Out</td>
<td>Data Set Ready - always high when unit is powered on.</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
<td>In</td>
<td>Request to Send -</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
<td>Out</td>
<td>Clear to send -</td>
</tr>
<tr>
<td>9</td>
<td>RI</td>
<td></td>
<td>Ring indicator -</td>
</tr>
</tbody>
</table>

2.4.2 RS485 Serial Port.

The RS485 port provides for communication between the D2 W MDME 2400 unit and its host device using a multi-drop cable. Up to 32 devices may be connected in each multi-drop network.

As the RS485 communication medium is shared, only one of the units on the RS485 cable may send data at any one time. Thus, communication protocols based on the RS485 standard require some type of arbitration.

RS485 is a balanced, differential standard, but it is recommended that shielded, twisted pair cable be used to interconnect modules to reduce potential RFI. It is important to maintain the polarity of the two RS485 wires. An RS485 network should be wired as indicated in the diagram below and terminated at each end of the network with a 120 ohm resistor. On-board 120 ohm resistors are provided and may be engaged by operating the single dip switch in the end-plate next to the RS485 terminals. The dip switch should be in the “1” or “on” position to connect the resistor. If the module is not at one end of the RS485 cable, the switch should be off.
Chapter Two

Installation

RS485 CONNECTIONS

RS485 CONNECTION USING TERMINATING RESISTOR

Page 15 November 2008
2.5 Discrete (Digital) Input/Output

The D2 W MDME 2400 has one on-board discrete/digital I/O channel. This channel can act as either a discrete input or discrete output. It can be monitored, set remotely, or alternatively used to output a communications alarm status.

If used as an “input,” the I/O channel is suitable for voltage-free contacts (such as mechanical switches) or NPN transistor devices (such as electronic proximity switches). PNP transistor devices are not suitable. Contact wetting current of approximately 5mA is provided to maintain reliable operation of driving relays.

The digital input is connected between the "DIO" terminal and common "COM." The I/O circuit includes an LED indicator which is lit when the digital input is active; that is, when the input circuit is closed. Provided the resistance of the switching device is less than 200 ohms, the device will be able to activate the digital input.

The I/O channel may also be used as a discrete output. The digital outputs are transistor switched DC signals, FET output to common rated at 30VDC 500 mA.

The output circuit is connected to the "DIO" terminal. The digital output circuit includes an LED indicator which is lit when the digital output is active.
Chapter Three

3.1 Start-up

“Access Point” Start-up.
An Access Point (AP) unit starts and immediately begins transmitting periodic messages, called beacons, on the configured channel. Beacons include capability information that a Client may examine in order to identify if the Access Point is suitable for link establishment. Clients will only attempt to establish a link with an Access Point whose beacon indicates a matching SSID. Access Points do not initiate link establishment.

“Client” Start-up.
When a Client powers up, it scans for beacons from Access Points. While a link is not established, the Client cyclically scans all available channels for a suitable Access Point. The Client will attempt to establish a link with an Access Point only if it has matching SSID and other compatible capabilities as indicated by the beacon. If more than one suitable Access Point is discovered, the client will attempt to establish a link with the Access Point that has the strongest radio signal.

Link Establishment.
Once a Client identifies a suitable Access Point for link establishment, it attempts to establish a link using a two step process – “Authentication” and “Association.” During Authentication, the Client and Access Point check if their configurations permit them to establish a link. Once the Client has been authenticated, it will then request an Association to establish a link.

Status of the wireless link is indicated via the LINK LED. For an Access Point, the LINK LED will be OFF while no links have been established. Once one or more links have been established, the LINK LED is ON. For a Client, the LINK LED will reflect the connection status to an Access Point. Link status is also displayed on the “Connectivity” page of the web interface.

After the link is established, data may be transferred in both directions. The Access Point will act as a master unit and will control the flow of data to the Clients linked to it. Clients can only transmit data to the AP to which they are connected. When a Client transfers data to another Client, it first transmits the data to the AP which then forwards the data to the destined Client.

Presence of a “link” does not mean that the connected unit is authorized to communicate over radio. If the encryption keys are incorrect between units in the same system, or a dissimilar encryption scheme is configured, the LINK LED will light; however, data may not be passed over the wireless network.

A maximum of 255 Clients may be linked to an Access Point.
How a Link Connection is Lost.

The Access Point refreshes the link status with a Client every time a message is received from that Client. If nothing is received from a Client for a period of 120 seconds, the Access Point sends a “link-check” message. If there is no response to the link-check, a de-authenticate message is sent and the link is dropped.

A Client monitors beacons from an Access Point to determine whether the link is still present. If the Client can no longer receive beacons from the AP, the AP is considered to be out of range and the link is dropped. Whenever a Client is not connected to an AP, it will cyclically scan all available channels for a suitable AP.

Roaming.

Clients may also roam between Access Points. If a Client receives a beacon from an AP with a stronger signal than the current AP (providing SSID is the same and capability information is compatible), it may disconnect from the first AP and establish a link with the second AP. This functionality permits a Client to have mobility while maintaining a link with the most suitable AP.

LED Indication.

The following table details the status of the indicating LEDs on the front panel under normal operating conditions.

<table>
<thead>
<tr>
<th>LED Indicator</th>
<th>Condition</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>GREEN</td>
<td>Normal operation</td>
</tr>
<tr>
<td>OK</td>
<td>RED</td>
<td>Supply voltage too low</td>
</tr>
<tr>
<td>Radio RX</td>
<td>GREEN flash</td>
<td>Radio receiving data</td>
</tr>
<tr>
<td>Radio RX</td>
<td>RED flash</td>
<td>Weak radio signal</td>
</tr>
<tr>
<td>Radio TX</td>
<td>Flash</td>
<td>Radio transmitting</td>
</tr>
<tr>
<td>Radio LINK</td>
<td>ON</td>
<td>On when a radio communications link is established</td>
</tr>
<tr>
<td>Radio LINK</td>
<td>OFF</td>
<td>Communications failure or radio link not established</td>
</tr>
<tr>
<td>Radio LINK</td>
<td>GREEN flash</td>
<td>Serial port receiving</td>
</tr>
<tr>
<td></td>
<td>RED flash</td>
<td>CTS low</td>
</tr>
<tr>
<td>LAN</td>
<td>ON</td>
<td>Link established on Ethernet port</td>
</tr>
<tr>
<td>LAN</td>
<td>Flash</td>
<td>Activity on Ethernet port</td>
</tr>
<tr>
<td>Serial</td>
<td>GREEN flash</td>
<td>RS232 serial port activity</td>
</tr>
<tr>
<td>Serial</td>
<td>RED flash</td>
<td>RS485 serial port activity</td>
</tr>
<tr>
<td>DIO</td>
<td>ON</td>
<td>Digital output ON or input is grounded</td>
</tr>
</tbody>
</table>
LED Indicator

<table>
<thead>
<tr>
<th>Condition</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Digital output OFF and input is open circuit</td>
</tr>
</tbody>
</table>

The Ethernet RJ45 port incorporates two indication LEDs. The LINK LED comes on when there is a connection on the Ethernet port, and will blink off briefly when activity is detected on the Ethernet port. The 100MB LED indicates that the connection is at 100 MBit/Sec. The 100MB LED will be off for 10MB/Sec connection.

Other conditions indicating a fault are described in Chapter Six, “Troubleshooting.”

3.2 Selecting a Channel

The D2 W MDME 2400 conforms to the IEEE 802.11 Wireless LAN specification. The D2 W MDME 2400 supports 11 radio channels, each 5 MHz wide, in the range 2412 MHz to 2462 MHz. Only one of these channels is used for a connection. The desired channel is selected and configured at the Access Point, and is then used for all beacon transmissions and connections. Clients scan all 11 channels for a suitable Access Point and then adopt the same channel as the AP when a connection is established. Although each channel is only 5 MHz wide, the radio transmission is much wider. Hence, the channels overlap. The following diagram shows the RF energy distribution for a Wi-Fi transmission:

Most of the energy is in a central 22 MHz wide “lobe,” centered around the channel frequency; however, there are also side lobes extending either side.

If we ignore the side lobes and consider each Wi-Fi message as a 22 MHz wide transmission, then the following diagram represents how transmissions in each channel overlap.

If there is more than one Wi-Fi AP within the same wireless range, then it is important that the APs are on channels as far apart as possible. If there are only two APs, set them to 1 and 11. If there are three, set them to 1, 6, and 11.

It is also important that the correct channel is selected for the region. Channels 1 to 11 are approved for North America (FCC), Europe (ETSI), Canada (IC), and Australia (ACMA). Channels 10 and 11 are approved for use in Spain and France. Refer to the relevant regulatory authority for the region as to which radio channels are approved for use.
Default Configuration

The default factory configuration of the D2 W MDME 2400 is:

- Client/Bridge.
- IP address 192.168.0.1XX, where XX is the last two digits of the serial number (the default IP address is shown on the printed label on the back of the module).
- Netmask 255.255.255.0.
- Username is “user” and the default password is “user.”

The D2 W MDME 2400 will temporarily load some factory default settings if powered up with the factory default switch (on the end-plate of the module) in SETUP position. When in SETUP mode, wireless operation is disabled. The previous configuration remains stored in non-volatile memory and will only change if a configuration parameter is modified and the change saved.

Do not forget to set the switch back to the RUN position and cycle power at the conclusion of configuration for resumption of normal operation.

3.3 Configuring the Unit for the First Time

The D2 W MDME 2400 has a built-in web server containing web pages for analysis and modification of configuration. The configuration can be accessed using Microsoft® Internet Explorer. This program is shipped with Microsoft Windows or may be obtained freely via the Microsoft web site.

Configuration of IP address, gateway address, and subnet mask may also be accessed via the RS232 serial port.

Accessing Configuration for the First Time.

There are two methods for accessing the configuration inside a D2 W MDME 2400. The first method requires changing your computer settings so that the configuring PC is on the same network as the D2 W MDME 2400 with factory default settings. **This is the preferred method** and is much less complicated than the second method. You will need a “straight-through” Ethernet cable between the PC Ethernet port and the D2 W MDME 2400. The factory default Ethernet address for the D2 W MDME 2400 is 192.168.0.1XX, where XX are the last two digits of the serial number (check the label on the back of the module).

The second method requires setting an IP address in the D2 W MDME 2400 such that it is accessible on your network without having to change your network settings.

3.4.1 Set PC to Same Network as D2 W MDME 2400.

Connect the Ethernet cable between unit and the PC configuring the module.
• Set the factory default switch to the SETUP position. This will always start the D2 W MDME 2400 with Ethernet IP address 192.168.0.1XX, subnet mask 255.255.255.0, gateway IP 192.168.0.1, and the radio disabled. Do not forget to set the switch back to the RUN position and cycle power at the conclusion of configuration for resumption of normal operation.

• Power up the D2 W MDME 2400 module.

• Open “Network Settings” on your PC under Control Panel. The following description is for Windows XP - earlier Windows operating systems have similar settings.

 • Open “Properties” of Local Area Connection.

 • Select Internet Protocol (TCP/IP) and click on Properties.

 • On the General tab, enter IP address 192.168.0.1, Subnet mask 255.255.255.0, and default gateway 192.168.0.1.
- Open Internet Explorer and ensure that settings will allow you to connect to the IP address selected. If the PC uses a proxy server, ensure that Internet Explorer will bypass the proxy server for local addresses. This option may be modified by opening Tools -> Internet Options -> Connections Tab -> LAN Settings->Proxy Server -> Bypass Proxy for Local Addresses.

- Enter the default IP address for the D2 W MDME 2400 http://192.168.0.1XX, where XX is the last two digits of the serial number.

- A welcome web page should be displayed as illustrated above.

- Configuration and Diagnostics may be opened by clicking on any of the menu items and entering the username “user” and default password “user.” Configure the unit to your requirements (refer to later sections of this Instruction Sheet).

When Configuration is complete, switch factory default dip switch on D2 W MDME 2400 to RUN position, and cycle power to resume normal configured operation.
3.4.2 Set D2 W MDME 2400 to Same Network as PC

This is the alternate procedure to setting an IP address in the D2 W MDME 2400. Consult your network administrator for an IP address on your network, the gateway IP address, and network mask.

a) Switch factory default dip switch on D2 W MDME 2400 to SETUP position.

b) Connect the RS232 port on the D2 W MDME 2400 to the RS232 port on the PC using a straight-through serial cable.

c) Open a terminal package (such as Hyperterminal) with 19200bps data rate, 8 data bit, 1 stop, no parity and no flow control. Make sure that no other programs have control of the serial port.

d) Power up the D2 W MDME 2400. Basic network settings will be displayed on the terminal as illustrated below. When prompted, hit enter key to stop automatic boot process. You have 5 seconds to abort the boot process.
e) Check values for Boot Address, Boot Netmask, and Boot Gateway. These values should be set to reflect those of the PC you are using to configure the unit. If these are correct, skip to Step (h). You may check settings again with the *rct* command. For further help, type the *help* command.

f) Set Boot Netmask to the same settings as the computer you have the Ethernet cable connected to. This may be performed with the command: *bnm* `<Type the netmask>`

g) Set Boot Gateway to the same settings as the computer you have the Ethernet cable connected to. This may be performed with the command: *bgw* `<Type the gateway IP address>`

h) Choose an IP address for the D2 W MDME 2400 being upgraded. This IP address must be on the same network as the computer you have connected the Ethernet cable to. This may be
performed with the command: \texttt{bip <Type the IP address>}

i) Switch dip switch on D2 W MDME 2400 to RUN position.

j) Type the command \texttt{reset}, or cycle power to the unit. The D2 W MDME 2400 will reset and start with the network settings you have entered.

k) Open Internet Explorer and ensure that settings will allow you to connect to the IP address selected. If the PC uses a proxy server, ensure that Internet Explorer will bypass the proxy server for local addresses. This option may be modified by opening Tools -> Internet Options -> Connections Tab -> LAN Settings->Proxy Server -> Bypass Proxy for Local Addresses.

l) Enter the web page \texttt{http://xxx.xxx.xxx.xxx/}, where \texttt{xxx.xxx.xxx.xxx} is the IP address selected for the module. A welcome web page should be displayed as illustrated.

m) Clicking on any of the menu items and entering the username “user” and password “user” may open Configuration and Diagnostics. If the password has previously been configured other than the default password, then enter this instead.

3.4 \textbf{Network Configuration}

You can view or modify Ethernet network parameters by selecting the “Network” menu. When prompted for username and password, enter “user” as the username, and “user” as the password in the password field. If IP address or password has been forgotten, the factory default switch may be used to access the existing configuration. Refer to Section 3.3 above.

The Network Configuration page allows configuration of parameters related to the wired and wireless Ethernet interfaces. In general, IP address selection will be dependant upon the connected wired Ethernet device(s) – before connecting to an existing LAN, consult the network administrator.

A system of D2 W MDME 2400s must have at least one Access Point acting as a master to one or more Clients. All D2 W MDME 2400s to be configured as part of the same wireless network should be given the same System Address (SSID) and Radio Encryption settings. For further information and examples on wireless network topologies, refer to Section 1.1 above.

The D2 W MDME 2400 supports several different radio encryption schemes. WEP (\textit{Wired Equivalent Privacy}) encryption is the weakest encryption method, defined by the original IEEE802.11 standard. 64-bit and 128-bit WEP combine either a 40-bit or 104-bit key with a 24-bit initialization vector, and are intended to provide equivalent security attributes to those of a wired medium. The D2 W MDME 2400 supports both 64-bit and 128-bit WEP without any performance (throughput) degradation.

WPA (\textit{Wi-Fi Protected Access}) is a subset of the IEEE802.11i Security Enhancements specification. The D2 W MDME 2400 supports WPA-1 TKIP and WPA-2 AES using a Pre-Shared Key (PSK). TKIP (\textit{Temporal Key Integrity Protocol}) enhances WEP by using 128-bit encryption plus separate 64-bit Tx and Rx MIC (\textit{Message Integrity Check}) keys. Enabling TKIP will degrade the D2 W MDME 2400 radio throughput by approximately half of the rate attainable using either WEP or no encryption. AES (\textit{Advanced Encryption Standard}), the most secure encryption method, is also based on 128-bit encryption key. Enabling AES in the D2 W MDME 2400 will degrade radio throughput to approximately 20% of the rate attainable using either WEP or no encryption.
After changes are made to Network Configuration, it is important to save the configuration by selecting “Save and Reset.”

Network Settings Web Page Fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Mode</td>
<td>Used to select Access Point (Infrastructure), Client (Infrastructure), IBSS (Ad-Hoc), or MONITOR mode. By default, this is set to Client.</td>
</tr>
<tr>
<td>Device Mode</td>
<td>Used to select Bridge or Router mode. By default, this is set to Bridge.</td>
</tr>
<tr>
<td>FTP Enabled</td>
<td>This enables access to volatile memory storage on the D2 W MDME 2400. By default, this is disabled.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>This is the unique hardware address of the D2 W MDME 2400 assigned in the factory. For the majority of systems, this item should not be changed. If the device is to be connected to equipment that will only communicate with a set MAC Address, the D2 W MDME 2400 may clone that MAC address.</td>
</tr>
<tr>
<td>Gateway IP Address</td>
<td>This is only required if the wired LAN has a gateway unit which connects to devices beyond the LAN - for example, Internet access. If there is no gateway on the LAN, set to the same address as the Access Point - that is, the “Ethernet IP Address” below.</td>
</tr>
<tr>
<td>Ethernet IP Address</td>
<td>The IP address of the D2 W MDME 2400 on its wired Ethernet port. This should be set to the IP address you require.</td>
</tr>
<tr>
<td>Ethernet IP Subnet Mask</td>
<td>The IP network mask of the D2 W MDME 2400 on its Ethernet port. This should be set to the IP address you require.</td>
</tr>
<tr>
<td>Wireless IP Address</td>
<td>The IP address of the D2 W MDME 2400 on the wireless port. If the unit is configured as a Bridge, this address will be the same as the Ethernet IP address. If configured as a Router, the IP address must be different from the Ethernet IP Address - it must be consistent with the LAN it is connecting to on the wired side.</td>
</tr>
<tr>
<td>Wireless IP Subnet Mask</td>
<td>The network mask of the D2 W MDME 2400 on the radio port. If configured as a Bridge, this must be the same as the Ethernet IP Subnet Mask.</td>
</tr>
<tr>
<td>System Address (SSID)</td>
<td>A D2 W MDME 2400 network comprises modules with the same "system address." Only modules with the same system address will communicate with each other. The system address is a text string 1 to 31 characters in length. Select a text string which identifies for your system.</td>
</tr>
<tr>
<td>Desired BSSID</td>
<td>To force a client/station to always connect to the same Access Point, enter the MAC address of that Access Point in the desired BSSID field (Note that the SSID of the Access Point must also match the configured SSID of the client).</td>
</tr>
<tr>
<td>Radio Encryption</td>
<td>Select “None,” “WEP (64-bit),” “WEP (128-bit),” “WPA-PSK (TKIP),” or “WPA-PSK (AES)” security encryption of the wireless data. The default setting is “None.”</td>
</tr>
<tr>
<td>Encryption Keys 1</td>
<td>These are the keys used to encrypt radio data to protect data from...</td>
</tr>
</tbody>
</table>
to 4 unwanted eavesdroppers when WEP Encryption is selected. These keys should be the same for all D2 W MDME 2400 units in the same system. One of the four keys may be selected as the default key, and is used to encrypt transmitted messages from the configured unit. A D2 W MDME 2400 can receive and decrypt a message from a module that has a different default key index as long as each module has the same key configured at the same index.

WEP keys must be entered as pairs of hexadecimal digits separated by colons. Hexadecimal digits are in the range 0...9 and A...F.

64-bit WEP requires 10 hexadecimal digits, and 128-bit WEP requires 26 hexadecimal digits. For example, 12:AB:EF:00:56. for 64-bit encryption, and 12:AB:EF:00:56:15:6B:E4:30:C8:05:F0:8D for 128-bit encryption.

Encryption keys must not be all zeros (i.e. 00:00:00:00:00).

| Passphrase | When WPA Encryption is selected, 128-bit Encryption keys are internally generated based on the Passphrase and System Address (SSID). The Passphrase must be between 8 and 63 characters in length, and must be the same for all D2 W MDME 2400 units in the same system. |
| Save and Reboot | Save settings to non-volatile memory, and reboot the D2 W MDME 2400. |

3.5 Ethernet Data

All Ethernet devices are uniquely identified by a MAC Address that identifies the hardware device. These addresses are factory-set, are six bytes in size, and are expressed in hexadecimal in the form xx:xx:xx:xx:xx:xx.

Ethernet messages can be addressed to a single device (a point-to-point message) or can be directed toward multiple destinations by using Multicast addresses and Broadcast addresses. The broadcast address is used to send data to all devices. The broadcast address is FF:FF:FF:FF:FF:FF.

Multicast addresses are used to direct data at a set of devices. Multicast addresses may be recognized as they always have the least significant bit of the first byte of the MAC Address set. For example, 01:00:5E:00:00:00 is a multicast address, and 01:80:C2:00:00:00 is also a multicast address.

3.6 Normal Operation

After addresses are configured, the units are ready for operation.

Refer to Section 1 for an explanation on the operation of a Bridge and Router.
Transparent Bridge Operation.

Bridges are typically used to connect sections of the same IP network together.

By default, the D2 W MDME 2400 is configured as a transparent bridge. When a transparent bridge is started, it learns the location of other devices by monitoring the source address of all incoming traffic. Initially, it forwards all traffic between the wired Ethernet port and the wireless port; however, by keeping a list of devices heard on each port, the transparent bridge can decide which traffic must be forwarded between ports - it will only transfer a message from the wired port to the wireless port if it is required.

A bridge will forward all Broadcast traffic between the wired and wireless ports. If the wired network is busy with broadcast traffic, the radio network on the D2 W MDME 2400 can be unnecessarily overburdened. Filtering may be used to reduce broadcast traffic sent over the radio. Refer to Section 3.12 for how to configure a filter.

By default, a transparent bridge does not handle loops within the network. There must be a single path to each device on the network. Loops in the network will cause the same data to be continually passed around that loop. Redundant wireless links may be set up by enabling the bridge Spanning Tree Protocol (see Section 3.9, “Spanning Tree Protocol,” for more information).

3 or 4 Address Mode.

There are two different operating modes that affect bridge operation for a D2 W MDME 2400 client/station – “3-Address Mode” or “4-Address Mode.”

Note that because the layer 3 bridge relies on IP, it is only suitable for bridging Ethernet frames from devices that communicate using IP. For this reason, the bridge Spanning Tree Protocol cannot be used with 3-address mode. When a D2 W MDME 2400 client/station uses 3-address mode, any Access Point that it is to communicate with may be configured for either 3 or 4 address mode (i.e. Access Point mode does not matter).

4-address mode allows a D2 W MDME 2400 client/station to bridge traffic from devices connected to its wired Ethernet port without acting as a proxy for their MAC address. This means that a D2 W MDME 2400 client/station in 4-address mode can bridge any Ethernet traffic – not just IP based traffic as with 3-address mode. 4-address mode should also be used if the bridge Spanning Tree
Protocol is required. When a D2 W MDME 2400 client/station uses 4-address mode, any Access Point that it is to communicate with must also be configured for 4-address mode.

Router Operation.

A router joins separate Ethernet networks together. The router has different IP addresses on its wired and wireless ports, reflecting the different IP addresses of the separate Ethernet networks. All the devices in the separate networks identify the router by IP address as their gateway to the other network. When devices on one network wish to communicate with devices on the other network, they direct their packets at the router for forwarding.

As the router has an IP address on each of the networks it joins, it inherently knows the packet identity. If the traffic directed at the router cannot be identified for any of the networks to which it is connected, the router must consult its routing rules as to where to direct the traffic. For details on configuring routing rules, see Section 3.11, “Routing Rules.”

3.7 Radio Configuration

The D2 W MDME 2400 can be configured for different radio transmission rates. A reduction in rate increases the reliable range (transmission distance). The factory default Data Rate settings are suitable for the majority of applications and should only be modified by experienced users.

The D2 W MDME 2400 allows for configurable fixed or fallback radio transmission Data Rates. When a fixed rate is configured, the radio transmission rate is never altered, even under extremely poor conditions. The fallback rates allow a maximum rate to be configured while enabling the unit to automatically reduce the rate when transmit errors occur. When a radio transmission is unsuccessful, the D2 W MDME 2400 will automatically drop to the next lowest Data Rate and enter probation. If subsequent transmissions are successful at the lower rate, the D2 W MDME 2400 will attempt to increase to the next highest rate when probation has ended. This can occur when either a specified number of data frames have been successfully transmitted at the lower rate, or when a specified amount of time has elapsed while using the lower rate.

The D2 W MDME 2400 also has a configurable “Basic Rate.” The difference between the Basic Rate and the radio Data Rate is that it only applies to multicast radio transmissions and management frames. The Basic Rate is generally set to a lower value than the Data Rate since multicast transmissions have no inherent error correction mechanism.

Select the “Radio” Menu to change the following configuration parameters. If a change is made, you need to select “Save Changes” to retain the changes. Changes will not take effect until the unit is reset.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Level</td>
<td>The RF power level is shown in this field. This value is read only and cannot be altered.</td>
</tr>
<tr>
<td>Data Rate</td>
<td>The radio baud rate in Mega (million) bits per second (Mbps) for point-to-point radio transmissions. The default value is Auto.</td>
</tr>
<tr>
<td>Basic Rate</td>
<td>The radio baud rate in Mega (million) bits per second (Mbps) for multicast messages and management frames. These frames include beacons, authentication, association, etc. The default value is 2 Mbps.</td>
</tr>
<tr>
<td>Channel</td>
<td>Radio Channels 1 to 11 may be configured at the Access Point. Refer to Section 3.2. By default, radio channel is set to 3.</td>
</tr>
<tr>
<td>Beacon Interval</td>
<td>This interval is the period between beacon transmissions sent by an Access Point. The default value is 100 milliseconds, and it may be adjusted from 50 to 4095 milliseconds.</td>
</tr>
<tr>
<td>RTS Threshold</td>
<td>RTS frames can be used to help avoid radio collisions between two stations that cannot directly hear each other. Any frame larger than RTS threshold bytes will be preceded by an RTS message.</td>
</tr>
<tr>
<td>Fragmentation Threshold</td>
<td>STA only. The maximum transmission unit (MTU) of data over the radio. If more than this number of bytes is input into the module, it will be transmitted in more than one message (or fragment).</td>
</tr>
<tr>
<td>Fallback Probation Counter</td>
<td>When one of the fallback Data Rates is selected, the radio Data Rate may be upgraded to the next highest rate after this many consecutive successful transmissions. The default value is 10.</td>
</tr>
<tr>
<td>Fallback Probation Timer</td>
<td>When one of the fallback Data Rates is selected, the radio Data Rate may be upgraded to the next highest rate after this amount of time is spent at a lower rate. The default value is 20 seconds.</td>
</tr>
<tr>
<td>Disable SSID broadcast</td>
<td>This should be used to prevent unwanted eavesdroppers from detecting the radio network System Address (SSID) by passively listening to beacon transmissions from the Access Point. When disabled, Access Points will not transmit the System Address openly in beacon messages. This is particularly useful in unencrypted radio networks.</td>
</tr>
<tr>
<td>Disallow Probe Requests without Correct SSID</td>
<td>This should be used to prevent unwanted users from detecting the radio network System Address (SSID) actively by sending a probe request to the Access Point. When disallowed, if the correct System Address is not supplied in the probe request, the Access Point will not respond. This is particularly useful in unencrypted radio networks.</td>
</tr>
<tr>
<td>Save Changes</td>
<td>Save changes to non-volatile memory. Changes will not take effect until module is reset.</td>
</tr>
<tr>
<td>Save Changes and Reset</td>
<td>Save changes to non-volatile memory and reset module.</td>
</tr>
</tbody>
</table>
The bridge “Spanning Tree Protocol” function was introduced to handle network loops and provide redundant paths in networks. To enable, the STP requires that WDS mode also be enabled on the “Repeaters” configuration page. When enabling WDS mode on a client/station, you should ensure that WDS mode is also enabled at the corresponding Access Point – refer to 3.10 Network Topology for more information.

For example, consider this network with a redundant wireless link. If the bridge Spanning Tree Protocol is enabled, one of the two wireless links will be disabled - that is, all wireless data will be transferred by one link only. If the active link fails, the other link will automatically start transferring the wireless data.

The Spanning Tree Protocol implemented is IEEE 802.1d compatible. The algorithm forms a loop-free network by blocking traffic between redundant links in the network. These blocked links are placed in a standby condition, and may be automatically enabled to repair the network if another link is lost. The Spanning Tree Algorithm maintains a single path between all nodes in a network by forming a tree-like structure. The Bridge Priority determines where the node sits in the tree. A Bridge configured with the lowest priority (0) will become the root node in the network, and will direct traffic between each of its branches. The root node is typically the unit that handles the majority of traffic in the network. The D2 W MDME 2400 is configured with a Bridge Priority of 32768 by default. The intention is to reduce traffic that the D2 W MDME 2400 must handle, by placing it at the branch level in the network tree. As a branch, the D2 W MDME 2400 needs only pass traffic to devices that are its “leaves.”

When the bridge is turned on it needs to determine who the root bridge is and compute the port roles (root, designated, or blocked). To ensure that each bridge has enough information, the bridges use special data frames called Bridge Protocol Data Units (BPDUs) to exchange information about bridge IDs and root path costs, etc.

There are some standard spanning tree protocol timers that can be adjusted that may help with managing spanning tree Protocol. See section 3.9 ‘Multiple AP Repeater Mesh Network / WDS Configuration’ below for details.
There is some overhead in maintaining a network utilizing the Spanning Tree Algorithm. Users wishing to increase their throughput, at the expense of redundancy, should disable Spanning Tree. The Spanning Tree Protocol can be configured on the Repeaters configuration page – note that 4-address mode must be enabled if the bridge Spanning Tree Protocol is to be used (refer to Section 3.7, “Normal Operation,” for details).

3.9 Multiple AP Repeater Mesh Network

The range of a wireless network can be extended by allowing Access Points to behave as repeaters and forward traffic to other Access Points. Access Point to Access Point communications is also known as Wireless Distribution System (WDS). The D2 W MDME 2400 offers very powerful WDS configuration, allowing for a mesh network with self-healing and automatic node discovery. Alternatively, fixed AP to AP links can be configured for optimized throughput.

WDS Access Points require IEEE802.11 4-address mode. 4-address mode may also be used by D2 W MDME 2400 clients when Ethernet protocols other than IP are to be used (See Section 3.7, “Normal Operation,” for more details).

Each D2 W MDME 2400 Access Point supports up to 6 separate interfaces for WDS links to other Access Points. Each WDS interface can be either a bridge or router interface (refer to Section 1.1, “Network Topology,” for more information on bridge versus router). If you need a simple repeater network, use a bridge interface.

A WDS bridge interface allows traffic to be bridged to another Access Point on the same IP network. WDS bridge interfaces do not require additional IP Address configuration, as they are bridged with the standard wireless interface that is used for connections to associated clients. All 6 WDS interfaces on the one Access Point may be bridged if required.

WDS bridge interfaces have the advantage that redundant paths are permitted when using the bridge Spanning Tree Protocol (see Section 3.9, “Spanning Tree Protocol”), thus behaving as a self-healing mesh network. Bridged networks are also not as configuration intensive as routed networks. Since WDS bridge interfaces generally do not require IP address configuration (they inherit the IP address of the standard wireless interface), they can be configured to automatically connect to other WDS enabled Access Points.

A WDS router interface allows traffic to be routed to an Access Point on a different network and, therefore, requires configuration of an IP address to reflect the network address of the destination network. WDS router interfaces cannot provide the redundancy of bridge interfaces, but can be used to reduce radio bandwidth requirements because the router can determine the destination based on IP address, whereas the bridge must go through a learning phase where all broadcast traffic must
be re-transmitted on each interface. Routed networks may also be used in some cases to avoid the overhead introduced by the bridge Spanning Tree Protocol when network loops exist.

Each WDS interface may also be configured with a different encryption algorithm; however, each side of a WDS link must specify the same encryption algorithm and keys. When configuring a mesh (i.e. auto connect) network with encryption, the same encryption algorithm and keys must be inherited from the default interface. Note that when WPA is required with a mesh network, the same SSID must be used for each Access Point. Alternatively, the list of possible allowed Access Points (by SSID) and their corresponding passphrases must be specified - since WPA Pre-Shared Keys are derived from both passphrase and SSID. WEP encryption can only be used for a WDS link; when WEP has also been enabled for the default wireless interface, the default WEP key will also be inherited.

One of the most common uses for WDS is to extend the range of the wireless network using repeaters. The diagram below illustrates a simple example where the three (3) Access Points are all at fixed locations (each of the Access Points could, of course, have one or more client/stations connected). Since the locations are fixed, we can avoid the overhead of using the bridge Spanning Tree Protocol by configuring fixed WDS links to ensure that each Access Point will only connect to the next Access Point in the chain. Any number of additional intermediate repeaters could be added to the chain in a similar way.
The WDS configuration for unit B is shown above (this page is accessible via the Repeaters link from the configuration web pages). WDS mode has been enabled, and “Only connect to APs in list” has been selected so that the repeater path is fixed. Since this example is a bridged network (i.e. all devices on the same IP network) and there is no possibility of loops (i.e. multiple paths to the same location), we do not need to incur the overhead of enabling bridge Spanning Tree Protocol. It can be seen that there are two (2) entries in the WDS connections list for unit B. We specify the Access Points at the other end of the WDS links by SSID only – though MAC addresses could also have been specified if there are multiple Access Points with the same SSID. Finally, in this example, we demonstrate the flexibility of the D2 W MDME 2400 by specifying different encryption on only one of the WDS links.

In the example below, four (4) Access Points (A, B, C, and D) form a mesh network using only WDS bridge interfaces. Each of the Access Points may also have its own clients associated. Each Access Point also has the same SSID, meaning the clients can roam freely throughout the mesh network and also that WPA encryption may easily be used. A, B, C, and D can all exchange data with each other (as can all of their clients) as if they were all on the same wired segment. It can be seen that there are redundant paths and, therefore, the possibility for loops to occur, so that the bridge Spanning Tree Protocol should be enabled. To illustrate the redundancy, consider that if A needs to send data to D, it has redundant paths through both B and C. However, due to the Spanning Tree Protocol, only one of B or C will relay the data, with the other taking over in the event of a failure.

The configuration for unit A is shown below (this page is accessible via the Repeaters link from the configuration web pages). It can be seen that “WDS” mode and “Bridge Spanning Tree Protocol” are enabled, and “Auto Connect to WDS enabled APs” is selected. Note that auto connect mode requires that none of the Access Points disable their “SSID broadcast;” otherwise, they must have the same SSID. If this is not the case, the connections must be manually entered into the WDS connection list (described later).

“Inherit default encryption” has also been selected – thus, allowing us to inherit the same encryption mode used for the default wireless interface (i.e. the interface used to communicate with clients). If WPA encryption is inherited, then all Access Points must have the same SSID; otherwise, the list of possible allowed Access Points (by SSID) and their corresponding passphrases
must be specified in the connection list since WPA Pre-Shared Keys are derived from both passphrase and SSID.

An example of using WDS router interfaces to achieve a similar physical topology to the WDS bridge example discussed earlier is illustrated below. In both examples, there are four (4) WDS Access Points each with the possibility of having their own client/stations associated. In both examples, A, B, C, and D can all exchange data with each other. The bridged example has the advantage of redundancy but at the expense of extra overhead. The routed example below cannot provide the redundancy of the bridged example, and requires more configuration effort, but does not have the overhead of using the bridge Spanning Tree Protocol, so is suited to fixed installations that do not require redundancy.
As mentioned previously, configuration of the WDS router example is more complex than the bridged example given earlier. In this case, all Access Points have different SSIDs, and none of them have SSID broadcast disabled so that WDS configurations can be made without knowledge of Access Point MAC addresses. If SSID broadcasts were disabled, each configuration entry would require an SSID and a MAC address (this is because both SSID and MAC addresses are required to establish a link – but the MAC address is always broadcast in beacons whereas the SSID broadcast is configurable).

Unit B in the WDS router example above has three (3) WDS links – to units A, C, and D; we show unit B’s configuration below. It can be seen that there are three (3) entries in the WDS Connections list. The first entry specifies a connection to the Access Point whose SSID is “A,” and that it is to be a WDS router interface with Router IP address 169.254.0.3 (this is the address that unit B adopts for the router interface link to unit A). Note that this IP Address specifies a different network than that of the default interface for unit B (i.e. default interface network 192.168.0.x compared to WDS interface network 169.254.0.x). It is a requirement that the interfaces at each end-point of a WDS link have the same network address, so by using a different network address to that of the default interface, we ensure that each end-point has a different network address than its default interface.

This ensures that the WDS links at either end-point are not bridged with their default interface, since in this example we wish to eliminate the overhead associated with a bridged interface.
A consequence of using a different network address for the WDS link between unit A and B is that we now need to configure a routing rule at units A and B so that the D2 W MDME 2400 can determine where to send traffic destined for the respective network addresses of A and B. For example, if unit B receives traffic destined for network 192.168.0.x (i.e. somewhere on unit A’s network), the routing rule specifies that the traffic must be forwarded to the end-point of the WDS link to unit A. The routing rules for unit B are shown below (for more information on routing rules, refer to Section 3.11, “Routing Rules”).

The second WDS entry above specifies the WDS link to unit C as a WDS router interface with IP address 169.254.5.3. As with the WDS link to unit A, we use a different IP network address than the default interface (note that this network address 169.254.5.x is also different to that used for the WDS link to unit A 169.254.0.x, so that these separate WDS interfaces are not internally bridged). Also, as with the WDS link to unit A, a routing rule is added to direct traffic destined for the network address of unit C (192.168.6.x). So, in this example, unit B has a total of three (3) IP addresses: 192.168.5.3 for the default interface; 169.254.0.3 for the WDS link to unit A; and 169.254.5.3 for the WDS link to unit C. **Note that we choose to always use the same host address of 3 for unit B on all of its interfaces regardless of the network address.**

The third WDS entry above specifies the WDS link to unit D. In the example, unit D has the same network address as unit B; therefore, we wish to have the WDS interface link to unit D bridged with the default interface. Because we don’t specify a router IP address for the third entry, the D2 W MDME 2400 automatically bridges this interface with the default wireless interface.

The routing rules for unit B are shown above. The routing rule for directing traffic to unit A can be seen to specify 192.168.0.0 as the destination address (the **network** address of unit A) – because the last byte is zero, this refers to a route to the **network** 192.168.0.x (as opposed to a route to an individual **host**). The same rule specifies the address 169.254.0.2 as the gateway address (this is the WDS Router IP address that unit A has been configured with for its WDS link to unit B). So, this routing rule effectively tells the D2 W MDME 2400 that any traffic destined for the network 192.168.0.x should be forwarded to unit A via the WDS link. Units A and C would also require similar pairs of routing rules to direct traffic to the network addresses at the end points of their respective WDS links. For unit D, it would suffice to simply configure unit B as its default gateway, as unit B would then forward on any traffic destined for units A and C. Refer to Section 3.11, “Routing Rules,” for further information.
WDS Configuration

The WDS Configuration page (as seen above) is accessible from the “Repeaters” link on any of the configuration web pages. The configurable WDS parameters are summarized below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 3 Bridge</td>
<td>When WDS communications are not required, select this option (see Section 3.7, “Normal Operation,” for details on Layer 3 Bridge).</td>
</tr>
<tr>
<td>WDS</td>
<td>Select WDS to enable Access Point to Access Point communications.</td>
</tr>
<tr>
<td>Bridge Spanning Tree Protocol</td>
<td>Select this to enable bridge Spanning Tree Protocol when the default radio interface is bridged (see Section 3.9, “Spanning Tree Protocol”).</td>
</tr>
<tr>
<td>Bridge Priority</td>
<td>The bridge priority when the Spanning Tree Algorithm is enabled. Defaults to 32768 with minimum of 0 (highest priority), maximum of 65535 (lowest priority).</td>
</tr>
<tr>
<td>Bridge Hello Time</td>
<td>The hello time is the time, in seconds, that all bridges wait before sending a hello packet BPDU (Bridge Protocol Data Units). Time selectable in 125msec increments and default interval is 4 second. BPDU-data frames between bridges that exchange information on bridge IDs and root path priority, etc.</td>
</tr>
<tr>
<td>Bridge Forward Delay</td>
<td>The forward delay is the time that is spent in the listening and learning state, processing the BPDU’s and determining the topology of the network. Time selectable in 125msec increments.</td>
</tr>
<tr>
<td>Bridge Maximum Age</td>
<td>The max age timer is the maximum length of time that passes before a bridge port saves its configuration BPDU information. Time selectable in 125msec increments and default interval is 20 second.</td>
</tr>
<tr>
<td>Auto Connect to WDS Enable APs</td>
<td>Attempt to automatically establish WDS links with other Access Points – even if those Access Points are not present in the list (NOTE – requires that Access Points that are not in the list do not have “SSID broadcast” disabled; otherwise, the SSID is assumed to be the same as this Access Point; Auto connect interfaces will always be bridged with the default wireless interface).</td>
</tr>
<tr>
<td>Only connect to APs in list</td>
<td>Only attempt to establish WDS links with Access Points identified in the list.</td>
</tr>
<tr>
<td>Maximum WDS Connections to this Device</td>
<td>Each D2 W MDME 2400 Access Point supports a maximum of six (6) WDS links direct to other Access Points. However, the maximum may be reduced – this can be useful when Auto Connect is used.</td>
</tr>
<tr>
<td>AP to AP Connection Threshold</td>
<td>The signal needs to be better than the configured threshold for a connection to be established. This will limit connections to APs with marginal signal levels and stop the BPDU relearning process occurring every time the link drops.</td>
</tr>
<tr>
<td>AP to AP Disconnection Threshold</td>
<td>If the receive signal level drops below the threshold after a connection has been established, the link will be disconnected. Disconnection Threshold should be less than or equal to the Connections Threshold.</td>
</tr>
</tbody>
</table>

WDS Connections Settings:

SSID	Specify the SSID of the Access Point(s) to establish a WDS link with. Leave this field blank if you wish to nominate the Access Point by MAC address only – however, in that case, the Access Point must not have “SSID broadcast” disabled.
MAC Address	Specify the MAC address of an Access Point to establish a WDS link with. Leave this field blank if you wish to connect to any Access Point with the nominated SSID
Encryption	Select the required encryption (if any) for this WDS link. If WEP Encryption is required, WEP must also be enabled for the default wireless interface – and the same WEP key will be inherited.
Passphrase	When WPA Encryption is selected, enter the WPA passphrase for this WDS link here.
Router IP	Leave this field blank if this WDS interface is to be bridged with the default wireless interface. Otherwise, enter the IP address for this Access Point that specifies the IP network to route messages to.
Router Subnet	Leave this field blank if this WDS interface is to be bridged with the default wireless interface. Otherwise, enter the subnet mask of the network to route messages to.
STP	Applicable to WDS router interfaces only. If two or more WDS router interfaces having the same Router IP Address and Subnet mask become active, the D2 W MDME 2400 must internally bridge them. Select the STP option if you wish to enable the bridge Spanning Tree Protocol for the bridge if this interface is added.
3.10 Routing Rules

When a D2 W MDME 2400 receives an IP frame that is destined for an IP address on a different network, it checks if the network address matches the network address of one of its own interfaces (i.e. hard-wired Ethernet, wireless Ethernet, or WDS), and forwards the frame appropriately. However, if the IP network address does not match any of its interfaces, the D2 W MDME 2400 will forward the frame to its default gateway. In this case, it is assumed that the default gateway has a valid route to the destination.

In some cases, it is not practical to have just one default gateway (i.e. routed wireless networks with more than two D2 W MDME 2400 routers; and in some cases, when WDS router interfaces are used). If more than one “next-hop router” is required, the D2 W MDME 2400 allows for up to 30 routing rules to be configured. A routing rule specifies a destination network (or host) IP address, and the corresponding next-hop router that messages for the specified destination will be forwarded to. It is assumed that the next-hop router (or gateway) will then deliver the data to the required destination (or forward it on to another router that will).

![Network Diagram]

The above network diagram illustrates a situation where routing rules may need to be configured. In this example, the D2 W MDME 2400 clients need only specify the Access Point as their default gateway (i.e. they require no routing rules be configured). However, for the Access Point to be able to deliver traffic to LAN B and LAN C, it needs to have routing rules configured that specify the respective D2 W MDME 2400 client/routers as next-hop routers (i.e. gateways) to networks B and C. Note that devices on LAN A should specify the D2 W MDME 2400 Access Point as their default gateway. An alternative to adding routing rules to the D2 W MDME 2400, in this example, would be for each device on LAN A that needs to communicate with LANs B and C to independently have routing rules specifying the D2 W MDME 2400 clients at B and C as gateways to those networks.

The routing rules for the Access Point in the above example are shown below. The first entry shows the route to LAN B. The gateway for the route to LAN B is configured as the wireless IP address of the D2 W MDME 2400 client connected to LAN B. The destination for the route is configured as the network address of LAN B. Because the host ID of the destination IP address is 0, it specifies a network address. Consequently, any traffic received at the Access Point with destination IP address 169.254.109.x (where x is any host ID) will be forwarded to the D2 W MDME 2400 at LAN B.
The Routing Rules configuration page can be accessed by selecting the “Routing” link on any of the configuration web pages. Up to 30 routing rules may be added to each D2 W MDME 2400. The table below summarizes the configurable parameters of a routing rule.

<table>
<thead>
<tr>
<th>Name</th>
<th>A name to describe the routing rule (Max 32 characters).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>The destination network (or host) IP address (to specify a network address set the host address to 0 (i.e. for a Class C IP address 192.168.0.0 would specify a destination network, while 192.168.0.16 specifies a destination host).</td>
</tr>
<tr>
<td>Gateway</td>
<td>The IP address of the next-hop router for the specified destination.</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>The subnet mask for the destination network.</td>
</tr>
</tbody>
</table>

3.11 Wireless Message Filtering

When configured as a Bridge, the D2 W MDME 2400 will transmit all broadcast messages appearing at its wired Ethernet port. When the D2 W MDME 2400 is configured as a Router, this does not occur.

In many cases, the intended recipient of the broadcast traffic does not lie at the opposite end of a proposed radio link. Reducing unnecessary broadcast traffic sent over the radio link will increase available bandwidth for data. The D2 W MDME 2400 has a filtering feature to help reduce unnecessary wireless transmissions and enhance security.

The D2 W MDME 2400 may be configured to reject or accept messages to and from certain addresses. To accept wireless messages from particular devices, a “White List” of addresses must be made. Alternatively, to reject messages from particular devices, a “Black List” of addresses must be made. Filtering applies only to messages appearing at the wired Ethernet port of the configured D2 W MDME 2400.

The filter comprises two lists: one of MAC Addresses and another listing IP protocol details. Each list may be set as either a Black List (to block traffic for listed devices and protocols), or as a White List (to allow traffic for listed devices and protocols). The filter operates on two rules listed below.

1. A Black List has priority over a White List. Traffic matching detail in a Black List will be discarded if it also appears in a White List.

2. When one or both lists are White Lists, traffic must have matching detail in at least one of the White Lists for it to be passed. Note that as this must agree with rule 1 above, the traffic detail must not match anything in a Black List, if present, for it to be passed.

When configuring a White List, it is important to add the addresses of all devices connected to the D2 W MDME 2400 wired Ethernet port that communicate over the wireless link. It is particularly important to add the address of the configuration PC to the White List. Failure to add this address will prevent the configuration PC from making any further changes to configuration. Design of the filter may be simplified by monitoring network traffic and forming a profile of traffic on the wired network. Network Analysis software, such as the freely available Ethereal program, will list broadcast traffic sent on the network.

For example, Computer B sees the Computer D via Ethernet Modems C & E. The white filtering requires that Modem C has Computer B in its White List; Modem E has Computer D in its White list.

![Diagram of network configuration]

Diagram:
- LAN
- Client Bridge
- Access Point Bridge
- 192.168.0.34
- 192.168.0.72
- 192.168.0.72

Network Configuration:
- **A**: LAN
- **B**: Access Point Bridge
- **C**: Client Bridge
- **D**: 192.168.0.34
- **E**: 192.168.0.72
- **Networking Components:**
 - Modem C
 - Modem E
 - Computer B
 - Computer D

Computer A will be not be able to access Computer D, as Computer A is not present in the White List in Modem C.

If radio links are chained together to form a radio backbone, it is also important to consider the operation of the Layer 3 Transparent Bridge (Refer to Section 3.6). A D2 W MDME 2400 Client will act as a MAC address translator, as it acts as a MAC address proxy on behalf of devices connected to its wired Ethernet port. Addition of D2 W MDME 2400 Client MAC addresses into intermediate D2 W MDME 2400 units’ White List filters may be required for correct operation.

It is advisable to use the Apply Changes button to test the configuration entered. Once the configuration is determined to be correct, the Apply Changes and Save button should be used. In the event that the configuration is incorrect, a power reset will revert the unit to previously saved configuration.

If an erroneous configuration has prevented all access to the module, SETUP mode may be used analyze what is wrong with the configuration. Simply switch the dip switch to SETUP and cycle power. The D2 W MDME 2400 will retain its configuration, however, will load up at IP address 192.168.0.1XX, netmask 255.255.255.0 with the radio and filter disabled. The XX in the IP address is the last two digits of the serial number. Configuration web pages will still show the original configuration. No changes are made to configuration until the user saves changes. To resume normal operation, set the dip switch to RUN and cycle power.

MAC Address Filter Configuration:

<table>
<thead>
<tr>
<th>Add Entries</th>
<th>Enter the MAC addresses of devices to be added to the list. Multiple entries must be separated by a semi-colon (;).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete Entries</td>
<td>Check the box alongside entries selected for removal from the list.</td>
</tr>
<tr>
<td>White List or Black List</td>
<td>Check the box to make the list a White List. This will allow devices with the MAC addresses listed to communicate with the module and utilize the radio link. All other devices are blocked unless they exist in an IP White List.</td>
</tr>
<tr>
<td></td>
<td>Uncheck the box to make the list a Black List. This will prevent all listed devices from using accessing the module and using the radio link.</td>
</tr>
<tr>
<td>Apply Changes</td>
<td>Update settings.</td>
</tr>
<tr>
<td>Apply Changes and Save</td>
<td>Update settings and save to non-volatile memory.</td>
</tr>
</tbody>
</table>
IP Address Filter Configuration:

<table>
<thead>
<tr>
<th>Add Entries</th>
<th>Enter the details of IP traffic to be added to the list. Protocols ARP, ICMP, TCP and UDP may be selected. Other IP protocols may be selected provided the IP protocol number within packets is known. TCP and UDP traffic may be also limited to specific port numbers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete Entries</td>
<td>Check the delete box alongside entries selected for removal from the list. Alternatively, check the enable box alongside entries if you want to make the rule active.</td>
</tr>
<tr>
<td>White List or Black List</td>
<td>Check the box to make the list a White List. This will only allow traffic described in the list to be sent over the radio link. All other traffic is blocked unless it is present in a MAC White List. Uncheck the box to make the list a Black List. This will ban all traffic described in the list from being sent to the module or over the radio link.</td>
</tr>
<tr>
<td>Apply Changes</td>
<td>Update settings.</td>
</tr>
<tr>
<td>Apply Changes and Save</td>
<td>Update settings and save to non-volatile memory.</td>
</tr>
</tbody>
</table>

NOTE: When configuring a TCP filter, it is often desirable to also configure both an ARP and an ICMP filter for the same IP Address range. The ARP filter is required whenever the sending device does not have a fixed IP to MAC address translation table entry (i.e. whenever the device may need to send an ARP request to determine the MAC address of a device with a known IP Address). An ICMP filter is needed to allow/disallow “pings.”

3.12 Serial Port Configuration

The D2 W MDME 2400 has an RS232 and RS485 port for serial communications. These ports may be used for different purposes. The D2 W MDME 2400 offers three (3) different serial functions which are PPP server, serial gateway, and Modbus TCP to RTU Gateway.

3.13.1 RS232 PPP Server.

The D2 W MDME 2400 can be used as a PPP server to connect the wireless Ethernet system to serial devices via the RS232 or RS485 serial ports.

The PPP server enables a network connection to the D2 W MDME 2400 over a serial cable. This is much like dial-up Internet. The maximum serial data rate is 115,200bps. Hardware or software flow control may be selected.

With minimal configuration on the PC, you may use dial-up networking in Windows XP to connect to the network via the serial port.

For the D2 W MDME 2400, users must configure the local IP address for the D2 W MDME 2400 and the remote device IP address. Some care must be taken in selecting these IP addresses.
If you wish to use routing over this serial network connection, then the IP addresses selected must not lie on wireless or wired Ethernet networks already configured into the device. You must ensure they set routing rules appropriately for devices either side of the network.

If you want the serial device visible as present on the wireless or wired network, then the local IP address must be the same as the IP address set for the desired port. A process called “Proxy ARP” is used to make the device visible on the network. In this process, the D2 W MDME 2400 pretends that it holds the IP address on the network, and responds on behalf of the remote device.

The result of this is similar to bridging for a single device, with some exceptions. One of these exceptions is the inability to handle name server searches of the network via this serial link. For example, you would encounter difficulty if you were to use Windows Explorer over the serial link to find a PC on the wired network. For this to operate correctly, you must explicitly map computer names to IP addresses in the “LMHOSTS” file on your PC.

When in SETUP mode, the D2 W MDME 2400 PPP server is enabled. This may also be used to configure the module. Settings while in SETUP mode are as follows:

- Username *user*, password is *user*.
- Serial baud rate 38400bps.
- Hardware flow control.
- Local address 192.168.123.123.
- Remote address 192.168.123.124.

To configure Windows XP to establish a PPP connection to a D2 W MDME 2400 in SETUP mode, follow these steps:

1. On Network Connections in Windows XP, select Create a New Connection.
2. On the New Connection Wizard, click Next.

3. Set up an advanced connection.

4. Connect directly to another computer.
5. Set PC as guest.

6. Set Computer Name.

7. Select a COM port.

8. Select availability.

9. Click Finish.
10. Select properties of this new connection by right-clicking on connection.

11. General Tab - click on Configure button.

12. Ensure maximum speed is 115200bps, click OK.

13. Select Networking Tab -> click on Internet Protocol (TCP/IP) in list box and then click Properties button.

15. On Advanced TCP/IP Settings form -> General Tab, uncheck field in PPP link stating "Use IP header compression."

16. Configuration is now complete. Click on this newly created link to establish a connection to D2 W MDME 2400.
17. Ensure both the username and the password are entered exactly as configured in D2 W MDME 2400. (When booted in SETUP mode, the PPP server has username “user” and password “user”).

3.13.2 Serial Gateway.

Serial gateway functionality is available for both RS232 and RS485 ports independently, and enables serial data to be routed via the wired or wireless network connection. Serial gateway functionality is similar to radio modem functionality, allowing point-to-point and multipoint serial data transfer.

Each D2 W MDME 2400 serial port may be configured as Server, Client, or Multicast Group. When configured as Server, the module will wait for a connection to be initiated by a remote client. When configured as Client, the module will automatically attempt to connect to the specified remote server. When configured as Multicast Group, the module will broadcast data to all members of the same Multicast Group.

Some of the possible serial gateway topologies are illustrated below. As you can see, it is possible for serial data from a D2 W MDME 2400 to be transferred to one or more D2 W MDME 2400 serial ports, or to be encapsulated within a TCP/IP socket for availability on an Ethernet network. Conversely, data encapsulated in a TCP/IP socket can be reproduced at a D2 W MDME 2400 serial port. Both D2 W MDME 2400 serial ports and the hard-wired Ethernet port can be in use at the same time.
There are software packages available (i.e. SerialIP Redirector by Tactical Software) that can create a virtual serial port on a PC. This virtual serial port can be configured to connect to a D2 W MDME 2400 serial port. Standard programs can then be used to access this serial port as if it were actually connected to the PC. Alternatively, the program TELNET may be used to connect to a serial port on the D2 W MDME 2400. The TELNET command used should be:

TELNET [IP address] [Listen Port]

e.g. TELNET 192.168.0.155 23 where the IP address is 192.168.0.155 and Listen Port is 23.

<table>
<thead>
<tr>
<th>Enable RS232 PPP Server</th>
<th>Check this box to enable the PPP network server on the RS232 port.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable RS485 Serial Gateway</td>
<td>Check this box to enable the Serial Gateway Server on the RS485 port.</td>
</tr>
<tr>
<td>Data Rate</td>
<td>The serial data rate desired. Serial data rates available range from 110bps to a maximum of 115,200bps.</td>
</tr>
<tr>
<td>Data Bits Parity Stop Bits</td>
<td>The data format desired. Data formats of 8N1, 7E1, 7O1, 7E2, 7O2 are supported.</td>
</tr>
<tr>
<td>Character Timeout</td>
<td>Enter the maximum delay (in msec) between received serial characters before packet is sent via network.</td>
</tr>
<tr>
<td>Server</td>
<td>When configured as Server, the module will wait for a connection to be initiated by a remote client.</td>
</tr>
<tr>
<td>Listen Port</td>
<td>Server only. Enter the TCP port number on which the server must listen for incoming connections. The standard TELNET port is 23.</td>
</tr>
<tr>
<td>Client</td>
<td>When configured as Client, the module will automatically attempt to connect to the specified remote server.</td>
</tr>
<tr>
<td>Remote Device Port</td>
<td>Client only. Enter the TCP port number of the remote server (i.e. the remote port to automatically connect to).</td>
</tr>
<tr>
<td>Remote Device IP Address</td>
<td>Client only. Enter the IP Address of the remote server (i.e. the remote IP Address to automatically connect to).</td>
</tr>
<tr>
<td>Multicast Group Port</td>
<td>Enter the UDP port number that all members of the group will use (i.e. all group members should use the same port number).</td>
</tr>
<tr>
<td>Multicast Group IP</td>
<td>Enter a valid Multicast IP Address identifying the group (i.e. all group members should use the same Multicast Group IP Address). Valid Multicast IP Addresses are in the range 224.0.1.0 to 238.255.255.255.</td>
</tr>
</tbody>
</table>

3.13.3 Modbus TCP to RTU Gateway.

The Modbus TCP to RTU Gateway allows an Ethernet Modbus/TCP Client (Master) to communicate with a serial Modbus RTU Slave. The D2 W MDME 2400 makes this possible by internally performing the necessary protocol conversion. The conversion is always performed by the D2 W MDME 2400 which is directly connected to the Modbus serial device (i.e. only this module needs to have Modbus TCP to RTU Gateway enabled).
The above example demonstrates how a Modbus/TCP Client (Master) can connect to one or more Modbus RTU (i.e. serial) Slaves. In this example, the D2 W MDME 2400 Access Point is configured with the “RS232 Modbus/TCP to RTU Gateway” enabled. Once enabled, the gateway converts the Modbus/TCP queries received from the Master into Modbus RTU queries and forwards these over the RS232 port to the Slave. When the serial response to the query arrives from the Slave, it is converted to a Modbus/TCP response and forwarded via the network to the Modbus/TCP Master. If no response was received serially by the D2 W MDME 2400 within the configured Response Timeout, the D2 W MDME 2400 will initiate a number of retries specified by the configured Maximum Request Retries.

The Modbus TCP to RTU Gateway may be configured to operate on either the RS232 or RS485 port. It does not support operation on both ports at the same time.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable RS232 Modbus TCP to RTU Gateway</td>
<td>Check this box to enable the Modbus TCP to RTU Gateway on the RS232 port. Only a single serial port is allowed at a time.</td>
</tr>
<tr>
<td>Enable RS485 Modbus TCP to RTU Gateway</td>
<td>Check this box to enable the Modbus TCP to RTU Gateway on the RS485 port. Only a single serial port is allowed at a time.</td>
</tr>
<tr>
<td>Data Rate</td>
<td>The serial data rate desired. Serial data rates available range from 110bps to a maximum of 115,200bps.</td>
</tr>
<tr>
<td>Data Bits Parity Stop Bits</td>
<td>The data format desired. Data formats of 8N1, 7E1, 7O1, 7E2, 7O2 are supported.</td>
</tr>
<tr>
<td>Pause Between Requests</td>
<td>Enter the delay between serial request retries in milliseconds</td>
</tr>
<tr>
<td>Response Timeout</td>
<td>Enter the serial response timeout in milliseconds – a serial retry will be sent if a response is not received within this timeout.</td>
</tr>
<tr>
<td>Connection Timeout</td>
<td>Enter the TCP connection timeout in seconds – if no Modbus/TCP data is received within this timeout, then the TCP connection will be dropped. Set this field to zero for no timeout.</td>
</tr>
<tr>
<td>Maximum Request Retries</td>
<td>Enter the maximum number of request retries performed serially.</td>
</tr>
<tr>
<td>Maximum Connections</td>
<td>Enter the maximum number of simultaneous TCP connections to the server allowed.</td>
</tr>
</tbody>
</table>
3.13 Digital Input/Output

The functionality of the shared Digital Input/Output pin may be configured via the “I/O Transfer” internal web page. As this pin is shared, the Digital Input status will be ON when the Digital Output is set ON.

The Digital I/O channel can be transferred to/from another device using Modbus (see Section 3.15, “Modbus I/O Transfer” below) or it can be configured to provide status of the module communications. If the D2 W MDME 2400 disassociates from another unit (that is, there is no wireless link), you can configure the digital output to turn ON (set) or OFF (drop).

3.14 Modbus I/O Transfer

The D2 W MDME 2400 provides Modbus TCP Client and Modbus TCP Server functionality for I/O transfer. 5000 x 16-bit general-purpose registers are provided for Modbus (including the on-board Digital Input/Output), and are shared for both Client and Server. Modbus TCP Client (Master) and Modbus TCP Server (Slave) are both supported simultaneously, and when combined with the built-in Modbus TCP to RTU Gateway, the D2 W MDME 2400 can transfer I/O to/from almost any combination of Modbus TCP or RTU devices.

The layout of the D2 W MDME 2400 I/O Registers is summarized in the table below. Each register is internally saved as a 16-bit value. A Modbus transaction may access the entire 16-bit value of any register or, alternatively, the most significant bit of a register may be accessed as a discrete value. The main use for the general-purpose I/O registers is for intermediate storage (i.e. when transferring I/O from one Modbus Slave device to another). Also provided is the status of the on-board digital I/O, as well as the status of the wireless link. The 16-bit status register contains the value FFFF (hex) for ON and 0000 (hex) for OFF. Inverted status registers are also provided where the registers contain 0000 (hex) for ON and FFFF (hex) for OFF.
Modbus TCP Client (Master) enables the D2 W MDME 2400 to connect to one or more Modbus TCP Servers (Slaves). All Modbus Master messages are directed either to/from the on-board I/O registers depending on configuration (described below). The Modbus TCP Client may also poll Modbus RTU (i.e. serial) devices connected to either the local serial port or a remote D2 W MDME 2400 serial port by enabling the Modbus TCP to RTU gateway at the corresponding serial port (see Section 3.13.3, “Modbus TCP to RTU Gateway”). Modbus TCP Client functionality allows connections to a maximum of 25 different Modbus TCP Servers.

Modbus TCP Server (Slave) enables the D2 W MDME 2400 to accept connections from one or more Modbus TCP Clients (Masters). All Modbus transactions routed to the on-board Modbus TCP Server are directed either to/from the on-board general-purpose I/O registers. The Modbus TCP Server is shared with the Modbus TCP to RTU Gateway, so that the Modbus “Device ID” is used to determine if a Modbus transaction is to be routed to the on-board Modbus TCP Server or to a Modbus RTU device connected to the serial port. Care should therefore be taken that all serially connected Modbus devices use a different Modbus Device ID (i.e. Modbus Slave Address) to the on-board Modbus TCP Server. Up to 32 separate connections to the Modbus TCP Server are supported.

Modbus RTU (serial) Master functionality is achieved by combining the Modbus TCP Client (Master) and Modbus TCP to RTU Gateway. Simply specify a Modbus TCP Client (Master) connection to a Modbus TCP Server where the server is the address of any D2 W MDME 2400 with Modbus TCP to RTU Gateway enabled. Care should be taken to ensure that the Device ID (i.e. Modbus Address) of the serial device is different to the Device ID of the on-board Modbus TCP Server of the D2 W MDME 2400 that the serial device is connected to.

The D2 W MDME 2400 provides a configurable option to automatically reset the value of the on-board I/O registers to zero in the event of a communications failure. If a valid Modbus transaction directed to/from a given register has not been completed for longer than a configurable timeout, then the value of that register will be reset to zero.

<table>
<thead>
<tr>
<th>Registers</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 4299</td>
<td>General-purpose I/O registers (read/write)</td>
</tr>
<tr>
<td>4300</td>
<td>On-board digital input value (read only)</td>
</tr>
<tr>
<td>4301</td>
<td>Link status (read only)</td>
</tr>
<tr>
<td>4320</td>
<td>On-board digital output value (read/write)</td>
</tr>
<tr>
<td>4370</td>
<td>On-board digital input inverted value (read only)</td>
</tr>
<tr>
<td>4371</td>
<td>Link status inverted (read only)</td>
</tr>
<tr>
<td>4372-4999</td>
<td>Reserved for future use</td>
</tr>
</tbody>
</table>
An example of the Modbus functionality of the D2 W MDME 2400 is illustrated below. In this example, the status of the on-board digital input at C will be reflected at the on-board digital output at B. Also, eight (8) I/O registers from Modbus serial device D will be transferred to A.

The Modbus configuration for unit C is shown below. Unit C is configured with Modbus TCP Server enabled and Device ID = 1, so that the Modbus TCP Client at B can connect and read the status of the on-board digital input. Unit C also has Modbus TCP to RTU Gateway enabled (see Section 3.13.3, “Modbus TCP to RTU Gateway”) so that the Modbus TCP Client at B can communicate with the serial Modbus RTU device D.

The configuration of unit B is shown below (accessible via the “I/O Transfer” configuration page). It can be seen that Modbus TCP Client has been enabled with a 500msec scan rate, meaning that there will be a 500msec delay between each of the mappings directed at any server. The “Reset Registers on Comms Fail” option is enabled with a timeout of 60 seconds, indicating that any of the registers at unit B will be reset if a successful Modbus transaction involving that register has not been executed in the last 60 seconds. The Modbus TCP to RTU Gateway at B must also be enabled (see Section 3.13.3, “Modbus TCP to RTU Gateway”) to allow Modbus communications with the serial device A.

Three “Modbus TCP Client Mappings” are also configured at B in order to perform the required I/O transfer. The first mapping transfers the status of the on-board digital input at C to the on-board digital output at B. Local Register 4320 specifies the register for the on-board digital output at B (since B is the local unit at which the mapping is configured). I/O Count 1 specifies that only one I/O point is being transferred (i.e. the single digital I/O). Function Code 02: Read Discretes
The second mapping reads eight (8) registers from serial unit D into on-board registers in unit B. Note that in this case, the specified Device ID 6 is the Modbus Address of the serial device D, while the Server IP Address 192.168.0.200 is the IP Address of unit C since the Modbus TCP to RTU Gateway at unit C converts the Modbus TCP message to Modbus RTU and routes it out the serial port to unit D.

The third mapping takes the eight (8) registers read by the second mapping and writes them to the serial unit A. The specified Device ID 5 is the Modbus Address of the serial device A, and the Server IP Address 192.168.0.196 is the IP Address of the local unit B since the local Modbus TCP to RTU Gateway is to route the message out the serial port to unit A.

Since the D2 W MDME 2400 supports Modbus TCP Client and Server simultaneously, the Modbus TCP Server for unit B above could also be enabled. This would allow one (or more) external Modbus TCP Clients anywhere on the extended wired or wireless network to connect to unit B and monitor the status of the I/O registers – including the I/O at units A, C, and D. This is a very powerful and flexible feature which could, for example, be exploited by a central monitoring facility or SCADA.

The configurable Modbus I/O transfer options are summarized in the tables below.
Modbus TCP Configuration:

<table>
<thead>
<tr>
<th>Enable Modbus TCP Server (Slave)</th>
<th>Check this box to enable the on-board Modbus TCP Server. All Modbus TCP connections to the module IP Address and specified Modbus Server Device ID will be routed to the on-board I/O registers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modbus Server Device ID</td>
<td>Specify the Modbus Device ID for the on-board Modbus TCP Server. Allowed values are 0 to 255.</td>
</tr>
<tr>
<td>Enable Modbus TCP Client (Master)</td>
<td>Check this box to enable the on-board Modbus TCP Client. I/O to be transferred via the Modbus TCP client is specified with Modbus TCP Client Mappings.</td>
</tr>
<tr>
<td>Modbus Client Scan Rate</td>
<td>Enter the delay (in milliseconds) between execution of consecutive Modbus TCP Client Mappings to the same server.</td>
</tr>
<tr>
<td>Reset Registers on Comms Fail</td>
<td>When enabled, the value in any on-board I/O register will be reset to zero if a valid Modbus transaction directed to/from the given register has not been completed for longer than the Comms Fail Timeout.</td>
</tr>
<tr>
<td>Comms Fail Timeout</td>
<td>The period of time after which on-board I/O registers will be reset if a valid Modbus transaction directed at that register has not completed.</td>
</tr>
</tbody>
</table>

Modbus TCP Client Mappings:

<table>
<thead>
<tr>
<th>Local Register</th>
<th>Enter the starting on-board I/O register number that the specified Modbus Master transaction will transfer I/O to/from.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O Count</td>
<td>Specify the number of consecutive I/O registers to be transferred for the specified transaction.</td>
</tr>
<tr>
<td>Function Code</td>
<td>Specify the Modbus Function Code for the transaction.</td>
</tr>
<tr>
<td>Destination Register</td>
<td>Enter the starting I/O register number in the destination device that the specified Modbus Master transaction will transfer I/O to/from.</td>
</tr>
<tr>
<td>Device ID</td>
<td>Enter the Modbus Device ID of the destination Modbus device.</td>
</tr>
<tr>
<td>Server IP Address</td>
<td>Specify the IP Address of the destination Modbus TCP Server for the specified transaction.</td>
</tr>
<tr>
<td>Response Timeout</td>
<td>Enter the timeout (in milliseconds) to wait for a response to the specified transaction.</td>
</tr>
<tr>
<td>Comms Fail Register</td>
<td>Enter the on-board I/O Register number to store the communication status of the specified transaction. The specified register will be set to 0 if communications is successful, 0xFFFF if there is no connection to the specified server, or 0xFFxx, where xx is the Modbus Exception Code.</td>
</tr>
</tbody>
</table>

3.15 Module Information Configuration

Module Information Web Page Fields.

This configuration page is primarily for information purposes. With the exception of the password, the information entered here is displayed on the root web page of the D2 W MDME 2400.
3.16 Remote Configuration

Because a module configuration is viewed and changed in a web format (which is an Ethernet application), you can view or change the configuration of a remote module via the wireless link, provided the remote module is already “linked” to the local D2 W MDME 2400.

To perform remote configuration, connect a PC to the local module, run Internet Explorer, and enter the IP address of the remote unit - the configuration page of the remote module will be shown and changes can be made. If the remote module is configured as a router, enter the wireless IP address of the router, not the Ethernet address.

Care must be taken if modifying the configuration of a module remotely. If the Radio Configuration is changed, some changes made may cause loss of the radio link, and therefore the network connection.

It is advisable to determine path of the links to the modules you wish to modify, and draw a tree diagram if necessary. Modify the modules at the “leaves” of your tree diagram. These will be the furthest away from your connection point in terms of the number of radio or Ethernet links.

In a simple system, this usually means modifying the Client modules first and the Access Point last.

3.17 Configuration Examples

Setting a D2 W MDME 2400 to Factory Default Settings.

First, access configuration web pages of D2 W MDME 2400. Refer to “Accessing Configuration Inside a Module for the First Time” or “Modifying an Existing Configuration.”

1. Click on System Tools menu item.
2. Enter username “user” and password “user,” when prompted for password.
Click on Factory Default Configuration Reset, and wait for unit to reset. When reset, the LINK LED will flash.

Extending a Wired Network

Access Point Configuration.

Connect straight-through Ethernet cable between PC and D2 W MDME 2400.

- Ensure configuration PC and D2 W MDME 2400 are set up to communicate on the same network.
- Set dip switch to SETUP mode.
- Power up unit, and wait for LINK LED to cease flashing.
- Adjust PC network settings.

 Set Configuration PC network card with network setting of IP address 192.168.0.1, netmask 255.255.255.0.

 Open configuration web page with Internet Explorer at address http://192.168.0.1XX/, where XX is the last two digits of the serial number.

 When prompted for password, enter default username “user” and password “user.”

 Enter “Network,” and select Operating Mode as Access Point.

 Select Device Mode as Bridge.

 Change the Gateway IP Address to 192.168.0.1.

 Change the Ethernet and Wireless IP addresses to 192.168.0.200.

 Change Ethernet and Wireless Subnet masks to 255.255.255.0.

 Enter a System Address (SSID) string.

 Select the Radio Encryption required.

 Set dip switch to RUN.

 Save the changes and unit will restart with new settings.
Chapter Three

Alternate procedure – Adjust D2 W MDME 2400 network settings using serial port (assuming configuration PC is on existing network).

a) Open terminal program with settings with data rate 19200bps, 8 data bits, 1 stop bit and no parity.
b) Set dip switch to SETUP.
c) Connect straight-through serial cable to D2 W MDME 2400 and power up unit.
d) When prompted, strike the Enter key to abort automatic boot.
e) Set IP address of D2 W MDME 2400 to 192.168.0.200 with command bip 192.168.0.200.
f) Set netmask of D2 W MDME 2400 to 192.168.0.200 with command bnm 255.255.255.0.
g) Set gateway address of D2 W MDME 2400 to 192.168.0.1 with command bgw 192.168.0.1.
h) Set dip switch to RUN.
i) Reset D2 W MDME 2400 with reset command.
j) Open configuration web page with Internet Explorer at address http://192.168.0.200/.
 When prompted for password, enter default username “user” and password “user.”
 Enter “Network,” and select Operating Mode as Access Point.
 Select Device Mode as Bridge.
 Change the IP address to 192.168.0.200.
 Enter a System Address (SSID) string.
 Select the Radio Encryption required, and enter the system keys. Make a record of these Encryption keys and use these on all modules in the system.
 Set dipswitch to RUN
 Save the changes and unit will restart with new settings.

Client 1 Configuration.
Perform the same configuration steps as the Access Point configuration with the following differences:

- Set the Ethernet and Wireless IP addresses of D2 W MDME 2400 to 192.168.0.201.
- Set the Operating Mode to Client.

 Ensure the same System Generator String is used and the same Radio Encryption method is selected.

Client 2 Configuration.

- Same as above, however, set the Ethernet and Wireless IP addresses as 192.168.0.202.
Connecting Two Separate Networks Together

Network A Configuration.

In this example, Network A is connected to the Internet via a router at IP address 192.168.0.1. Devices on Network A that only require access to devices on Networks A and B should have their gateway IP address set to the D2 W MDME 2400 Access Point as 192.168.0.200. Devices on Network A that must interact with devices on Networks A and B and the Internet should set the Internet router 192.168.0.1 as their gateway, and must have a routing rule established for devices on Network B. On PCs, this may be achieved with the MS-DOS command ROUTE. For this example, use: ROUTE ADD 169.254.102.0 MASK 255.255.255.0 192.168.0.200.

Network B Configuration.

All devices on Network B should be configured so their gateway IP address is that of the D2 W MDME 2400 Access Point as 169.254.102.54.

Access Point Configuration

- Connect straight-through Ethernet cable between PC and D2 W MDME 2400.
- Ensure configuration PC and D2 W MDME 2400 are set up to communicate on the same network.
- Set dip switch to SETUP.
- Power up unit, and wait for LINK LED to cease flashing.
- Adjust PC network settings.
 - Set Configuration PC network card with network setting of IP address 192.168.0.1, netmask 255.255.255.0.
 - Open configuration web page with Internet Explorer at address http://192.168.0.1XX/.
 When prompted for password, enter default username “user” and password “user.”
 Enter “Network,” and select Operating Mode as Access Point.
 Device Mode should be set to Router.
 Set the Gateway IP address to 192.168.0.1.
 Set the Ethernet IP address to 192.168.0.200, network mask 255.255.255.0.
 Set the Wireless IP address to 169.254.102.54, network mask 255.255.255.0.
Select the Radio Encryption required, and enter encryption keys if necessary.
Set dip switch to RUN.
Click on Save to Flash and Reset button. Web page will display that message indicating details are being written to flash. Wait for D2 W MDME 2400 to reboot before removing power.
Enter a System Generator String.

Client Configuration.
Perform the same configuration steps as the Access Point configuration with the following differences:
Enter “Network,” and select Operating Mode as Client.
Device Mode should be set to Bridge.
Set the Gateway IP address to 169.254.102.54.
Set the Ethernet IP address to 169.254.102.53, network mask 255.255.255.0.
Set the Wireless IP address to 169.254.102.53, network mask 255.255.255.0.
Click on Save to Flash and Reset button. Web page will display that message indicating details are being written to flash. Wait for D2 W MDME 2400 to reboot before removing power.

Extending Range of a Network with a Repeater Hop

Configure units as described in “Extending a Wired Network.” Place the Access Point at the remote intermediate repeater location. Additional repeaters can be added using Wireless Distribution System (WDS) – refer to Section 3.10, “Repeater Configuration,” for further details.
Chapter Four

4.1 DIAGONSTICS

Diagnostics Chart

<table>
<thead>
<tr>
<th>LED Indicator</th>
<th>Condition</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>GREEN</td>
<td>Normal operation</td>
</tr>
<tr>
<td>OK</td>
<td>RED</td>
<td>Supply voltage too low</td>
</tr>
<tr>
<td>Radio RX</td>
<td>GREEN flash</td>
<td>Radio receiving data</td>
</tr>
<tr>
<td>Radio TX</td>
<td>Flash</td>
<td>Radio transmitting</td>
</tr>
<tr>
<td>Radio LINK</td>
<td>ON</td>
<td>On when a radio communications link is established</td>
</tr>
<tr>
<td>Radio LINK</td>
<td>OFF</td>
<td>Communications failure or radio link not established</td>
</tr>
<tr>
<td>LAN</td>
<td>ON</td>
<td>Link established on Ethernet port</td>
</tr>
<tr>
<td>LAN</td>
<td>Flash</td>
<td>Activity on Ethernet port</td>
</tr>
<tr>
<td>Serial</td>
<td>GREEN flash</td>
<td>RS232 serial port activity</td>
</tr>
<tr>
<td>Serial</td>
<td>RED flash</td>
<td>RS485 serial port activity</td>
</tr>
<tr>
<td>DIO</td>
<td>ON</td>
<td>Digital output ON or input is grounded</td>
</tr>
<tr>
<td>DIO</td>
<td>OFF</td>
<td>Digital output OFF and input is open circuit</td>
</tr>
</tbody>
</table>

The green OK LED on the front panel indicates correct operation of the unit. This LED turns red on failure as described above. When the OK LED turns red, shutdown state is indicated. On processor failure, or on failure during start-up diagnostics, the unit shuts down and remains in shutdown until the fault is rectified.

Boot Loader LED Indication during Start-up.

<table>
<thead>
<tr>
<th>Serial</th>
<th>LAN</th>
<th>LINK</th>
<th>ACTIVE</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange</td>
<td>Orange</td>
<td>Orange</td>
<td>RED</td>
<td>Initial power up and bootload initialization</td>
</tr>
<tr>
<td>RED</td>
<td>Orange</td>
<td>Orange</td>
<td>RED</td>
<td>Check config. and print sign-on message (If boot delay not zero)</td>
</tr>
<tr>
<td>Orange</td>
<td>Orange</td>
<td>Orange</td>
<td>RED</td>
<td>Print configuration table to terminal (If boot delay not zero)</td>
</tr>
<tr>
<td>Green</td>
<td>LAN</td>
<td>Off</td>
<td>RED</td>
<td>Initialize networking and start auto boot sequence</td>
</tr>
<tr>
<td>Orange</td>
<td>LAN</td>
<td>Off</td>
<td>GREEN</td>
<td>Wait for <ENTER> to abort auto boot (If boot delay not zero)</td>
</tr>
<tr>
<td>Sequence</td>
<td>LAN</td>
<td>Sequence</td>
<td>GREEN</td>
<td>Boot – loader active (auto boot aborted or no application)</td>
</tr>
<tr>
<td>SERIAL</td>
<td>LAN</td>
<td>LINK</td>
<td>GREEN</td>
<td>Normal operation. Application running.</td>
</tr>
</tbody>
</table>
4.2 Diagnostic Information Available

4.2.1 Connectivity.

The Connectivity web page at an Access Point lists all Clients with which it is associated. The page also indicates whether the encryption scheme has been authorized at the Access Point. A D2 W MDME 2400 will fail to be authorized if the encryption keys are incorrect.

The received signal strength, background noise, and radio data rate is listed for each Client or Access Point by their MAC Address. The readings shown are based upon the last received data message from the Access Point or Client. Generating radio traffic to the device will update values for signal strength, background noise, and radio data rate. Use programs such as Ping to generate data packets to test the radio path.
4.2.2 Monitor Communications.

To monitor radio communications, it is necessary to configure the Operating Mode under “Network” as MONITOR. When in the MONITOR mode, the “Monitor Communications” function displays a continuous list of transmissions that are being received.

As beacon messages occur very frequently, they have been filtered out from the Monitor Communications display for convenience.

Monitor Communications lists the frame type of each transmission and various statistics of each transmission, along with a time stamp. Communications can only be monitored on one channel at a time – the channel that is used for monitoring can be altered on the radio settings page.

Use of this feature together with the Connectivity web page will reveal the variability of communications over a link, and other systems that may be in the area.
4.2.3 Statistics.

The Statistics web page is used for advanced debugging of D2 W MDME 2400. This web page details the state of the D2 W MDME 2400 and its performance in the system.

4.2.4 Network Traffic Analysis.

There are many devices and PC programs that will analyze performance of an Ethernet network. Freely available programs such as Ethereal provide a simple, cost-effective means for more advanced analysis. By monitoring traffic on the wired Ethernet, a better idea of regular traffic can be discovered.

Network Analysis programs make configuration of a filter for the D2 W MDME 2400 a simple task.

4.3 Testing Radio Paths

The general procedure for radio range testing a link is fairly simple. Configure two units to form a link using automatic radio rates. Install the Access Point at a fixed location. Take a laptop computer and the Client to each of the remote locations, and analyze the link using the Connectivity web page. If a beacon is heard from the Access Point, the Client will update its Connectivity web page with the received signal strength of beacon messages from the Access Point.
If the signal is strong enough, a link may be established, and the Connectivity web page of the Access Point may be opened. If the link is weak, the LINK LED will go out, and the remote Connectivity web page of the Access Point will fail to load. Using this procedure, the signal strengths of units at both locations may be analyzed, and traffic is sent between the units while remote web pages are opened.

4.4 Utilities

4.4.1 Ping.

Ping is a basic Internet program that lets you verify that a particular IP address exists and can accept requests. Ping is used diagnostically to ensure that a host computer you are trying to reach is actually operating. If, for example, a user cannot ping a host, then the user will be unable to send files to that host. Ping operates by sending a packet to a designated address and waiting for a response. The basic operation of Ping can be performed by following these steps in any Windows operating system.

Click on the Start Menu and select Run. Type in “cmd” and enter, you should then see the command screen come up. There will be a certain directory specified (unique to your own PC) with a flashing cursor at the end. At the cursor, type the word “ping,” leaving a space and the default IP address for the D2 W MDME 2400 at first start-up.

This command would be written as Ping 192.168.123.123, then Enter to send the ping command. The PC will reply with an acknowledgement of your command and if the D2 W MDME 2400 is correctly configured, your reply will look something like this.

```
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.
C:\Documents and Settings\Support>d.
C:\Documents and Settings>cd..
C:\>ping 192.168.123.123
Pinging 192.168.123.123 with 32 bytes of data:
Reply from 192.168.123.123: bytes=32 time=4ms TTL=255
Reply from 192.168.123.123: bytes=32 time<1ms TTL=255
Reply from 192.168.123.123: bytes=32 time<1ms TTL=255
Reply from 192.168.123.123: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.123.123:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
   Approximate round trip times in milli-seconds:
       Minimum = 0ms, Maximum = 4ms, Average = 4ms
C:>
```

The screen shot below shows the response of the “ping 192.168.123.123 –t” command.
This `-t` command is used to repeatedly ping the specified node in the network; to cancel use “Ctrl – C.”

A good test for the network once it is first set up is to use Ping repeatedly from one PC’s IP address to the other PC’s IP address. This gives a good example of the network’s reliability and how responsive it is from point to point. When you enter “Ctrl C,” the program reports a packet sent-received-lost percentage.
4.4.2 IPCONFIG

IPCONFIG can be used to show your current TCP/IP information, including your address, DNS server addresses, adapter type, and so on.

In the above example, IPCONFIG was entered in the command prompt. The reply back shows the PC’s IP address, subnet mask, and the gateway it is connected to.

Other IPCONFIG commands will return back more information. The hardware or MAC address of the computer may be discovered using the command IPCONFIG /all. IPCONFIG /? will list all of the commands and their usages available for use.

4.4.3 ARP

Displays and modifies the IP-to-physical address translation tables used by Address Resolution Protocol (ARP).

Once a remote computer has been pinged, this can be used to see the IP address and MAC address of the remote computer. It will also show any other devices on the network that it may be connected to.
The command used for above screen shot is `Arp –a`. It shows the PC’s direct IP address of 192.168.0.17 as also shown before with `IPCONFIG` command. The other IP address shown with its associated MAC address is another device with a connection to the PC. In this example, it is the IP address of a PLC connected to the PC also.

`Arp –n` lists all the commands available for this function.

4.4.4 Route.

Route is used for the Router function. This is where you are joining two different networks together via the D2 W MDME 2400 (refer to Section 1.1 for more information).

The D2 W MDME 2400 can only accept 1 routing table. That is, it can only accept one router per network of radios. On the router radio network PC, a routing rule must be entered to allow access between Network A and Network B. This is entered in the command prompt as per all other instruction above.

Route PRINT will show all active routes on PC,
Route ADD will add a routing table to network,
Route DELETE `<destination netmask gateway interface>` will delete the unwanted routing table,
Route CHANGE modifies an existing route.

An example of a routing table is shown for the configuration below.
Network A Settings
- **IP Address**: 192.168.0.17
- **Gateway IP**: 192.168.0.1
- **Subnet Mask**: 255.255.255.0

Client Bridge Settings
- **Gateway IP**: 192.168.2.51
- **Ethernet IP**: 192.168.2.50
- **Subnet Mask**: 255.255.255.0
- **Wireless IP**: 192.168.2.50
- **Subnet Mask**: 255.255.255.0

Access Point Router Settings
- **Gateway IP**: 192.168.0.1
- **Ethernet IP**: 192.168.0.191
- **Subnet Mask**: 255.255.255.0
- **Wireless IP**: 192.168.2.051
- **Subnet Mask**: 255.255.255.0

Network B Settings
- **IP Address**: 192.168.2.201
- **Subnet Mask**: 255.255.255.0
- **Gateway IP**: 192.168.2.51

In the Network A PC, a routing rule is to be set.

This will allow Network A and B to have access to each other. This is entered under cmd prompt.

Route ADD 192.168.2.0 MASK 255.255.255.0 192.168.0.191.

This says access everything on Network B (192.168.2.0) with the Mask of 255.255.255.0 on Network A via the Ethernet IP Interface 192.168.0.191.

IP Address 192.168.2.0 will allow everything on this network to be shared by the router. When adding a routing table, you will need to enter this in. Once entered in, the router will determine whether to pass information over the router if it is addressed to do so or not. For added security, MAC address filtering could be added as mentioned earlier in Section 3.
Chapter Five
SPECIFICATIONS

<table>
<thead>
<tr>
<th>General</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EMC Specification</td>
<td>EN 300 683</td>
</tr>
<tr>
<td>Radio Specification</td>
<td>EN 300 328</td>
</tr>
</tbody>
</table>
| Housing | 114 x 140 x 30mm
4.5 x 5.5 x 1.2 inch |
| Powder-coated, extruded aluminum
DIN rail mount |
| Terminal Blocks | Removable
Suitable for 12 gauge (2.5sqmm) conductors |
| LED Indication | Active, Serial RX and TX, Radio RX and TX, Link |
| Operating Temperature | -35 to +60 degrees C
-30 to +140 degrees F |
| Power Supply | |
| Nominal Supply | 9 to 30VDC
Overvoltage and reverse voltage protected |
| Average Current Drain | 240 mA @ 12V
150mA @ 24VDC |
| Current Drain When Transmitting | 440 mA @ 12V
280mA @ 24VDC |
| Ethernet Port | 10/100 BaseT
RJ45 |
| Standard | IEEE 802.3 compliant
Bridge/Router, Access Point/Client functionality |
| Radio Transceiver | |
| Transmit power | Different models available
100mW (20dBm) or 300mW (25dBm) |
| Channels | 11 x 5MHz
First channel center at 2.412 GHz |
| Receiver Sensitivity | < 8% FER
-96dBm @ 1Mb/s, -91dBm @ 11Mb/s |
| Antenna Connector | Female SMA coaxial
Two connectors for signal diversity |
<table>
<thead>
<tr>
<th>Wireless data rate</th>
<th>1 to 11Mb/s</th>
<th>“Auto” function determines fastest rate within user-configured fade-margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Ports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS232 Port</td>
<td>DB9 female DCE</td>
<td>RTS/CTS/DTR/DCD hardware signals provided</td>
</tr>
<tr>
<td>RS485 Port</td>
<td>2 pin terminal block</td>
<td>Max distance 4000’ / 1.2 km</td>
</tr>
<tr>
<td>Data rate</td>
<td>1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600, 76800, 115200</td>
<td>7 or 8 data bits, Stop/start/parity bits configurable</td>
</tr>
<tr>
<td>System Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Address</td>
<td>1 to 31 character text string</td>
<td></td>
</tr>
<tr>
<td>Wireless Data</td>
<td>None, WEP (64-bit and 128-bit), WPA-PSK (TKIP)</td>
<td>Encryption</td>
</tr>
<tr>
<td>User Configuration</td>
<td>Via embedded web page</td>
<td>Via RS232 commands, or RS-232 PPP connection</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>LEDs</td>
<td>OK, DCD, Radio and Serial RX/TX</td>
</tr>
<tr>
<td></td>
<td>RSSI measurement in dBm</td>
<td>BER test</td>
</tr>
</tbody>
</table>
Appendix A FIRMWARE UPGRADE

Determine which Firmware version is present in the module to be upgraded by viewing the index web page of the module.

Firmware Versions V1.21 and higher may be upgraded via the configuration web pages. This upgrade can be done locally with a PC connected directly to the module, or remotely over a working radio link. For remote upgrade, it is advisable to reduce radio traffic over the link from other devices as much as possible. If necessary, create a temporary separate radio network to perform the upgrade to remote modules. Please refer to the “Web-based Upgrade” section for the upgrade procedure.

Firmware Versions prior to V1.21 require must be upgraded using the FlashUpdate utility, and can only be performed local to the module. The FlashUpdate utility should also be used if Firmware versions of modules to be upgraded are unknown. The section “Manual Upgrade using Flash Update” outlines the upgrade procedure.

Web-based Upgrade

If the module has application Firmware Version V1.21 or higher currently installed, please follow these steps to upgrade the unit.

1. Place the new application Firmware file ‘epm_D2_W_MDME_2400_x.x.bin.gz’ on the computer’s hard drive. Ensure that the file is not placed in a deeply nested folder.
2. Open internal web page of unit to be upgraded, and Select System Tools from Menu.
3. Select Firmware Upgrade from the System Tools menu.
4. Click Browse button and find the application Firmware file on your computer. Ensure that the file is not in a deeply nested folder, as there is a character limitation of the filename and path.
5. There are two options:

 a. The “Save to Flash and Reset” button may be clicked, to initiate a reset immediately after
 a successful Firmware upgrade so that the new firmware is run.

 b. Alternatively, click “Save to Flash” button to just program the new Firmware to the unit.
 A reset is necessary to run the new Firmware. This is useful for maintaining radio link
 while performing upgrades to remote units.

6. The following dialog box may be displayed as a warning. Click OK to proceed.

7. Firmware upgrade will proceed, and should take about 1 minute if performed locally. If
 performed over a radio link, the upgrade may take longer, depending upon the quality of the radio
 link and the amount of traffic on the network.
During the upgrade, the web page shows a progress bar at the bottom right side of the browser window.

When upgrade is completed, the System Tools web page will be shown if “Save to Flash” was clicked. If “Save to Flash and Reset” was clicked, the unit will display a message that the module is resetting.

Firmware upgrade is now complete.

Manual Upgrade using Flash Update

1. Connect the module’s Ethernet port to PC Ethernet port via a straight-through Ethernet cable. Straight-through Ethernet cable is typically a blue color. Alternatively, connect the module to PC via a network switch or hub, as some configurations of Windows can encounter difficulty upgrading without a hub connected. On some PCs, Windows can take much longer than expected to initialize its network interface when the device is reset - connecting via a hub/switch removes this issue during the upgrade procedure.

2. Switch dip switch on module to **SETUP** mode.

3. **Power up** the module and wait a couple seconds. This will ensure that Windows networking can correctly detect an operating Ethernet port.
4. Ensure your PC network settings have a Subnet Mask of 255.255.255.0. This can be easily checked using DOS command IPCONFIG.

5. Extract FlashUpdate program, and start the program.

6. If you are running Windows firewall, you may be prompted with the following message. Select Unblock so that FlashUpdate program may operate. If any other firewall software is operating, disable it.

7. Copy new Firmware files to a known location on the hard drive of your PC. Do not unzip these files.

8. Specify location of Firmware bootloader file (epm mrb_E24g_1.65) and Firmware application file (epm_D2_W_MDME_2400_x.x.bin.gz) using the Browse buttons in the FlashUpdate program.

9. Connect PC to module RS232 serial port with straight-through serial cable.

10. Select COM port connected to module in the FlashUpdate program.
11. Select Server Interface in the *FlashUpdate program*. (IP address of PC connected to which can be found from Step 4 above)

![Flash Update Interface](image)

Note: Computer and module MUST have same Subnet Mask. (usually 255.255.255.0).

12. Click on *Upgrade* button in *FlashUpdate* program.

13. Follow instructions from confirmation window.

![Confirm Window](image)

Ensure SETUP switch is ON, and RS232 and Ethernet cables are connected to module. Cycle power to module within 30 seconds after selecting "OK" to this message.

14. Click *OK*, **Power down** module, wait approximately 1 second, and power up module. This entire step must be accomplished within 30 seconds of completing the previous step.
15. Programming will commence…

![Flash Update](image)

Note: Computer and module MUST have same Subnet Mask (usually 255.255.255.0).

16. If programming was successful, a dialog box is displayed showing this.

![Information](image)

17. Switch dip switch to RUN position and cycle power for normal operation.
Appendix B Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACK</td>
<td>Acknowledgment.</td>
</tr>
<tr>
<td>Access Point</td>
<td>An Access Point is the connection that ties wireless communication devices into a network. Also known as a base station, the Access Point is usually connected to a wired network.</td>
</tr>
<tr>
<td>Antenna Gain</td>
<td>Antennas don't increase the transmission power, but focus the signal more. So instead of transmitting in every direction (including the sky and ground), antennas focus the signal usually either more horizontally or in one particular direction. This gain is measured in decibels.</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>The amount of "transportation" space an Internet user has at any given time.</td>
</tr>
<tr>
<td>Bridge</td>
<td>Bridges are similar to repeaters or network hubs, devices that connect network segments at the physical layer. Connects multiple network segments at the data link layer.</td>
</tr>
<tr>
<td>Collision Avoidance</td>
<td>A network node characteristic for proactively detecting that it can transmit a signal without risking a collision.</td>
</tr>
<tr>
<td>Crossover Cable</td>
<td>A special cable used for networking two computers without the use of a hub. Crossover cables may also be required for connecting a cable or DSL modem to a wireless gateway or Access Point. Instead of the signals transferring in parallel paths from one set of plugs to another, the signals "cross over." If an eight-wire cable was being used, for instance, the signal would start on pin one at one end of the cable and end up on pin eight at the other end. They "cross over" from one side to the other.</td>
</tr>
<tr>
<td>CSMA/CA</td>
<td>CSMA/CA is a "listen before talk" method of minimizing (but not eliminating) collisions caused by simultaneous transmission by multiple radios. IEEE 802.11 states collision avoidance method rather than collision detection must be used, because the standard employs half duplex radios—radios capable of transmission or reception—but not both simultaneously. Unlike conventional wired Ethernet nodes, a WLAN station cannot detect a collision while transmitting. If a collision occurs, the transmitting station will not receive an ACK acknowledge packet from the intended receive station. For this reason, ACK packets have a higher priority than all other network traffic. After completion of a data transmission, the receive station will begin transmission of the ACK packet before any other node can begin transmitting a new data packet. All other stations must wait a longer pseudo randomized period of time before transmitting. If an ACK packet is not received, the transmitting station will wait for a subsequent opportunity to retry transmission.</td>
</tr>
<tr>
<td>CSMA/CD</td>
<td>A method of managing traffic and reducing noise on an Ethernet network. A network device transmits data after detecting that a channel is available. However, if two devices transmit data simultaneously, the sending devices detect</td>
</tr>
<tr>
<td>DHCP</td>
<td>A utility that enables a server to dynamically assign IP addresses from a predefined list and limit their time of use so that they can be reassigned. Without DHCP, an IT Manager would have to manually enter in all the IP addresses of all the computers on the network. When DHCP is used, whenever a computer logs onto the network, it automatically gets an IP address assigned to it.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dial-up</td>
<td>A communication connection via the standard telephone network, or Plain Old Telephone Service (POTS).</td>
</tr>
<tr>
<td>DNS</td>
<td>A program that translates URLs to IP addresses by accessing a database maintained on a collection of Internet servers. The program works behind the scenes to facilitate surfing the Web with alpha versus numeric addresses. A DNS server converts a name like mywebsite.com to a series of numbers like 107.22.55.26. Every website has its own specific IP address on the Internet.</td>
</tr>
<tr>
<td>DSL</td>
<td>Various technology protocols for high-speed data, voice and video transmission over ordinary twisted-pair copper POTS (Plain Old Telephone Service) telephone wires.</td>
</tr>
<tr>
<td>Encryption Key</td>
<td>An alpha-numeric (letters and/or numbers) series that enables data to be encrypted and then decrypted so it can be safely shared among members of a network. WEP uses an encryption key that automatically encrypts outgoing wireless data. On the receiving side, the same encryption key enables the computer to automatically decrypt the information so it can be read.</td>
</tr>
<tr>
<td>Firewall</td>
<td>Keeps unauthorized users out of a private network. Everything entering or leaving a system's internal network passes through the firewall and must meet the system's security standards in order to be transmitted. Often used to keep unauthorized people from using systems connected to the Internet.</td>
</tr>
<tr>
<td>Hub</td>
<td>A multiport device used to connect PCs to a network via Ethernet cabling or via Wi-Fi. Wired hubs can have numerous ports and can transmit data at speeds ranging from 10 Mbps to multi-gigabyte speeds per second. A hub transmits packets it receives to all the connected ports. A small wired hub may only connect 4 computers; a large hub can connect 48 or more.</td>
</tr>
<tr>
<td>HZ</td>
<td>The international unit for measuring frequency, equivalent to the older unit of cycles per second. One megahertz (MHz) is one million hertz. One gigahertz (GHz) is one billion hertz. The standard U.S. electrical power frequency is 60 Hz, the AM broadcast radio frequency band is 535—1605 kHz, the FM broadcast radio frequency band is 88—108 MHz, and wireless 802.11b LANs operate at 2.4 GHz.</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers, New York, www.ieee.org. A membership organization that includes engineers, scientists, and students in electronics and allied fields. It has more than 300,000 members and is involved in...</td>
</tr>
</tbody>
</table>
with setting standards for computers and communications.

Infrastructure Mode
A client setting providing connectivity to an AP. As compared to Ad-Hoc mode, whereby PCs communicate directly with each other, clients set in Infrastructure Mode all pass data through a central AP. The AP not only mediates wireless network traffic in the immediate neighborhood, but also provides communication with the wired network. See Ad-Hoc and AP.

I/O
The term used to describe any operation, program, or device that transfers data to or from a computer.

Internet Appliance
A computer that is intended primarily for Internet access, is simple to set up, and usually does not support installation of third-party software. These computers generally offer customized web browsing, touch-screen navigation, e-mail services, entertainment, and personal information management applications.

IP
A set of rules used to send and receive messages at the Internet address level.

IP (Internet Protocol)
Telephony
Technology that supports voice, data, and video transmission via IP-based LANs, WANs, and the Internet. This includes VoIP (Voice over IP).

IP address
A 32-bit number that identifies each sender or receiver of information that is sent across the Internet. An IP address has two parts: an identifier of a particular network on the Internet and an identifier of the particular device (which can be a server or a workstation) within that network.

IPX-SPX
IPX, short for Internetwork Packet Exchange, a networking protocol used by the Novell NetWare operating systems. Like UDP/IP, IPX is a datagram protocol used for connectionless communications. Higher-level protocols, such as SPX and NCP, are used for additional error recovery services. Sequenced Packet Exchange, SPX, a transport layer protocol (layer 4 of the OSI Model) used in Novell Netware networks. The SPX layer sits on top of the IPX layer (layer 3) and provides connection-oriented services between two nodes on the network. SPX is used primarily by client/server applications.

ISA
A type of internal computer bus that allows the addition of card-based components like modems and network adapters. ISA has been replaced by PCI and is not very common anymore.

ISDN
A type of broadband Internet connection that provides digital service from the customer's premises to the dial-up telephone network. ISDN uses standard POTS copper wiring to deliver voice, data, or video.
ISO Network Model	A network model developed by the International Standards Organization (ISO) that consists of seven different levels, or layers. By standardizing these layers and the interfaces in between, different portions of a given protocol can be modified or changed as technologies advance or systems requirements are altered. The seven layers are: Physical, Data Link, Network, Transport, Session, Presentation, Application.
LAN	A system of connecting PCs and other devices within the same physical proximity for sharing resources such as an Internet connections, printers, files, and drives.
Receive Sensitivity	The minimum signal strength required to pick up a signal. Higher bandwidth connections have less receive sensitivity than lower bandwidth connections.
Router	A device that forwards data from one WLAN (wired local area network) to another.
SNR	Signal to Noise Ratio. The number of decibels difference between the signal strength and background noise.
Transmit Power	The power usually expressed in mW or db that the wireless device transmits at.
MAC Address	A MAC address, short for Media Access Control address, is a unique code assigned to most forms of networking hardware. The address is permanently assigned to the hardware, so limiting a wireless network's access to hardware -- such as wireless cards -- is a security feature employed by closed wireless networks. But an experienced hacker -- armed with the proper tools -- can still figure out an authorized MAC address, masquerade as a legitimate address and access a closed network. Every wireless 802.11 device has its own specific MAC address hard-coded into it. This unique identifier can be used to provide security for wireless networks. When a network uses a MAC table, only the 802.11 radios that have had their MAC addresses added to that network's MAC table will be able to get onto the network.
NAT	Network Address Translation: A network capability that enables a houseful of computers to dynamically share a single incoming IP address from a dial-up, cable, or DSL connection. NAT takes the single incoming IP address and creates new IP address for each client computer on the network.
NIC	A type of PC adapter card that either works without wires (Wi-Fi) or attaches to a network cable to provide two-way communication between the computer and network devices such as a hub or switch. Most office wired NICs operate at 10 Mbps (Ethernet), 100 Mbps (Fast Ethernet), or 10/100 Mbps dual speed. High-speed Gigabit and 10 Gigabit NIC cards are also available. See PC Card.
Proxy Server	Used in larger companies and organizations to improve network operations and security, a proxy server is able to prevent direct communication between two or more networks. The proxy server forwards allowable data requests to remote servers and/or responds to data requests directly from stored remote server data.
RJ45	Standard connectors used in Ethernet networks. Even though they look very similar to standard RJ11 telephone connectors, RJ45 connectors can have up to eight wires, whereas telephone connectors have only four.
Server	A computer that provides its resources to other computers and devices on a network. These include print servers, Internet servers, and data servers. A server can also be combined with a hub or router.
Site Survey	The process whereby a wireless network installer inspects a location prior to putting in a wireless network. Site surveys are used to identify the radio- and client-use properties of a facility so that access points can be optimally placed.
SSL	Commonly used encryption scheme used by many online retail and banking sites to protect the financial integrity of transactions. When a SSL session begins, the server sends its public key to the browser. The browser then sends a randomly generated secret key back to the server in order to have a secret key exchange for that session
Sub-network or Subnet	Found in larger networks, these smaller networks are used to simplify addressing between numerous computers. Subnets connect to the central network through a router, hub, or gateway. Each individual wireless LAN will probably use the same subnet for all the local computers it talks to.
Switch	A type of hub that efficiently controls the way multiple devices use the same network so that each can operate at optimal performance. A switch acts as a networks traffic cop: rather than transmitting all the packets it receives to all ports as a hub does, a switch transmits packets to only the receiving port.
TCP	A protocol used along with the Internet Protocol (IP) to send data in the form of individual units (called packets) between computers over the Internet. While IP takes care of handling the actual delivery of the data, TCP takes care of keeping track of the packets that a message is divided into for efficient routing through the Internet. For example, when a web page is downloaded from a web server, the TCP program layer in that server divides the file into packets, numbers the packets, and then forwards them individually to the IP program layer. Although each packet has the same destination IP address, it may get routed differently through the network. At the other end, TCP reassembles the individual packets and waits until they have all arrived to forward them as a single file.
TCP/IP	The underlying technology behind the Internet and communications between computers in a network. The first part, TCP, is the transport part, which matches the size of the messages on either end and guarantees that the correct message has been received. The IP part is the user's computer address on a network. Every computer in a TCP/IP network has its own IP address that is either dynamically assigned at start-up or permanently assigned. All TCP/IP messages contain the address of the destination network as well as the address of the destination station. This enables TCP/IP messages to be transmitted to multiple networks (subnets) within an organization or worldwide.
VoIP	Voice transmission using Internet Protocol to create digital packets distributed over the Internet. VoIP can be less expensive than voice transmission using standard analog packets over POTS (Plain Old Telephone Service).
VPN	A type of technology designed to increase the security of information transferred over the Internet. VPN can work with either wired or wireless networks, as well as with dial-up connections over POTS. VPN creates a private encrypted tunnel from the end user's computer, through the local wireless network, through the Internet, all the way to the corporate servers and database.
WAN	A communication system of connecting PCs and other computing devices across a large local, regional, national, or international geographic area. Also used to distinguish between phone-based data networks and Wi-Fi. Phone networks are considered WANs and Wi-Fi networks are considered Wireless Local Area Networks (WLANs).
WEP	Basic wireless security provided by Wi-Fi. In some instances, WEP may be all a home or small-business user needs to protect wireless data. WEP is available in 40-bit (also called 64-bit), or in 108-bit (also called 128-bit) encryption modes. As 108-bit encryption provides a longer algorithm that takes longer to decode, it can provide better security than basic 40-bit (64-bit) encryption.
Wi-Fi	Wireless Fidelity: An interoperability certification for wireless local area network (LAN) products based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard.
Appendix C

European Compliance

The Cooper Crouse-Hinds D2 W MDME 2400 module can be used in the following countries listed below with no restrictions:

<table>
<thead>
<tr>
<th>Austria</th>
<th>Belgium</th>
<th>Cyprus</th>
<th>Czech Republic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denmark</td>
<td>Estonia</td>
<td>Finland</td>
<td>Germany</td>
</tr>
<tr>
<td>Greece</td>
<td>Hungary</td>
<td>Ireland</td>
<td>Italy</td>
</tr>
<tr>
<td>Latvia</td>
<td>Lithuania</td>
<td>Luxembourg</td>
<td>Malta</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Poland</td>
<td>Portugal</td>
<td>Slovakia</td>
</tr>
<tr>
<td>Slovenia</td>
<td>Spain</td>
<td>Sweden</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Iceland</td>
<td>Liechtenstein</td>
<td>Norway</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>Romania</td>
<td>Turkey</td>
<td></td>
</tr>
</tbody>
</table>

The following countries have restrictions for use:

Luxemburg: General authorization required for network and service supply. This implies a license to use the band is required from local radio spectrum authorities.

Norway: Does not apply for the geographical area within a radius of 20 km from the center of Ny-Ålesund; otherwise okay to use.

France: Outdoor use limited to 10mW EIRP. Full implementation planned for 2012. This can be implemented by the use of 10dB attenuators between the module and antenna.

Italy: If used outside of own premises, general authorization is required. This implies a license to use the band is required from local radio spectrum authorities.

Russian Federation: Only for indoor applications.