Front Matter

Abstract
This manual contains information and instructions for installing, operating and maintaining the CHB 310-7 Medium Intensity Obstruction Lighting System.

Copyright
Copyright © 2007, Cooper Crouse-Hinds, Syracuse, NY, 13221, U.S.A.
All rights reserved. Reproduction or use of any portion of this manual is prohibited without express written permission from Cooper Crouse-Hinds and/or its licenser.

Trademark Acknowledgements
Cooper Crouse-Hinds is a registered trademark name.
All trademarks and product names mentioned are properties of their respective companies, and are recognized and acknowledged as such by Cooper Crouse-Hinds.

Applicable Specifications
This equipment meets or exceeds requirements for an FAA Type L-865.

Disclaimer
While every effort has been made to ensure that the information in this manual is complete, accurate and up-to-date, Cooper Crouse-Hinds assumes no liability for damages resulting from any errors or omissions in this manual, or from the use of the information contained herein. Cooper Crouse-Hinds reserves the right to revise this manual without obligation to notify any person or organization of the revision.

In no event will Cooper Crouse-Hinds be liable for direct, indirect, special, incidental, or consequential damages arising out of the use of or the inability to use this manual.
Warranty
Cooper Crouse-Hinds warrants all components, under normal operating conditions, for 2 years.

Parts Replacement
The use of parts or components, in this equipment, not manufactured or supplied by Cooper Crouse-Hinds voids the warranty and invalidates the third party testing laboratory certification which ensures compliance with FAA Advisory Circulars 150/5345-43E, 150/5345-51 and 150/4345-53B. The certification is valid as long as the system is maintained in accordance with FAA guidelines (FR doc. 04-13718 filed 6-16-04).

Personnel Hazard Warning

Dangerous Voltages
Dangerous line voltages reside in certain locations in this equipment. Also, this equipment may generate dangerous voltages. Although CHCA has incorporated every practical safety precaution, exercise extreme caution at all times when you expose circuits and components, and when you operate, maintain, or service this equipment.

Avoid Touching Live Circuits
Avoid touching any component or any part of the circuitry while the equipment is operating. Do not change components or make adjustments inside the equipment with power on.

Dangerous Voltages Can Persist with Power Disconnected
Under certain conditions, dangerous voltages can be present because capacitors can retain charges even after the power has been disconnected.

Protect yourself — always turn off the input (primary) power and wait for one minute for storage capacitors to drain their charge. Then check between the red and blue wires on the flashhead terminal block with a voltmeter for any residual charge before touching any circuit element or component.

Do Not Depend on Interlocks
Never depend on interlocks alone to remove unsafe voltages. Always check circuits with a voltmeter. Under no circumstances remove or alter any safety interlock switch.
Table of Contents

CHB 310-7 .. i
Front Matter ... i
 Abstract ... i
 Copyright .. i
 Trademark Acknowledgements .. i
 Applicable Specifications .. i
 Disclaimer .. i
 Warranty ... ii
 Parts Replacement ... ii
Personnel Hazard Warning ... ii
 Dangerous Voltages ... ii
 Avoid Touching Live Circuits ... ii
 Dangerous Voltages Can Persist with Power Disconnected ii
 Do Not Depend on Interlocks ... ii
Table of Contents ... iii
List of Figures .. v
Section 1 – Introduction and Operation .. 1
 System ... 1
 Specifications .. 1
 Physical .. 1
 Performance Characteristics ... 1
 Operation ... 1
 Configurations .. 2
 Alarm Contacts .. 2
 Photocell ... 2
 PCB1 Timing and Trigger Board .. 3
 Board Configuration ... 4
 Options Switch .. 4
 RS-232 ... 5
 RES PEC Jumper ... 5
 Trigger Voltage ... 5
 Communication LEDs ... 5
 Status LEDs .. 6
 RS-485 Setup .. 6
 Internal Red Jumper ... 6
Optional Modem Card .. 6
Section 2 - Mounting, and Installation ... 7
 Unpacking .. 7
 Tools ... 7
 Access ... 7
 WARNING ... 7
 Power Converter ... 7
 Flashhead .. 7
 Mounting ... 7
 Power Converter ... 7
List of Figures

Figure 1-1 – TB1 Alarm Contacts .. 2
Figure 1-2 – 2903800 Board Configuration ... 3
Figure 2-1 – Power Converter Mounting and Outline .. 11
Figure 2-2 – Flashhead Mounting and Outline .. 1
Figure 2-3 – Photocell Mounting and Outline .. 13
Figure 2-4 – Typical System – Wiring Guideline .. 14
Figure 2-5 – Multiple Dual System with External Red Light Controller Guideline 15
Figure 2-6 – Typical Dual System Installation .. 16
Figure 2-7 – Multiple Dual System Installation ... 17
Figure 2-8 – PC 310-7 Power Converter Internal Wiring (110-120V) 1
Figure 2-9 – PC 310-7 Power Converter Internal Wiring (208-240V)..................................... 1
Figure 2-10 – Recommended Alarm Wiring .. 20
Figure 2-11 – FH 308 Internal Wiring .. 21
Figure 2-12 – RS-485 Installation .. 1
Figure 3-1 – Function Indicators .. 30
Figure 3-2 – Troubleshooting Chart (Part 1 of 4) .. 1
Figure 3-3 – Troubleshooting Chart (Part 2 of 4) .. 35
Figure 3-4 – Troubleshooting Chart (Part 3 of 4) .. 36
Figure 3-5 – Troubleshooting Chart (Part 4 of 4) .. 37
Figure 4-1 – Power Converter Major Replacement Parts ... 39
Figure 4-2 – Power Converter Component Layout ... Error! Bookmark not defined.
Figure 4-3 – Flashhead Major Replacement Parts ... 41
Figure 4-4 – Flashhead Component Layout .. 1
Section 1 – Introduction and Operation

System
A single system consists of a flashhead, a power converter, a photocell, and a connecting cable from the power converter to the flashhead.

The power converter supplies the controlling circuitry to convert main AC power to the required voltages for internal operation and the discharge energy for the flashhead. It also controls the flash rate.

The photocell senses changes in lighting conditions from day to night and from night to day thus signaling the power converter to change its operation appropriately. Also, a provided switch can manually override the photocell if required.

Specifications

Physical
PC 310-7 (H x W x D, Weight)
14.00 x 16.75 x 8.44 in., 51 lbs.
355.6 x 425.5 x 214.4 mm, 23 kg.

FH 308 (H x Diameter, Weight)
17 x 18.25 in., 17 lbs.
431.8 x 463.5 mm, 7.7 kg.

PEC 510 Photocell (H x W x Depth)
3.06 x 2.58 x 1.02 in.
77.7 x 65.5 x 2.59 mm

Aerodynamic Wind Area
Flashhead 0.93 ft², 0.0864 m²
Power Converter 1.63 ft², 0.15 m²

Environmental
Complies with FAA specifications in AC 150/5345-43.

Flash Rate
Day (White) 40 flashes per min.
White backup 40 flashes per min.

Electrical (PC 310-7)
AC Voltage 120 or 240V, 60 Hz
110 or 230V, 50 Hz
208-240V 50 Hz

Volt-Amperes 250 peak

Application - L-865
Flash Intensity (nominal):
Day (White) 20,000 ± 25% ECD
White Backup 2,000 ± 25% ECD

Beam Spread
Horizontal: 360°
Vertical: 5°

Operation
The PC 310-7 Power Converter operates an FH 308 white flashhead. It monitors flashhead operation and signals an alarm if a failure occurs. The flashhead begins to operate as soon as power is applied. A photocell controls intensity for the system.

In daylight, lights flash white at a rate of 40 flashes per minute (FPM) at an intensity of 20,000 candelas. At night lights flash at a rate of 40 FPM at an intensity of 2,000 candelas.

Obstructions over 350 feet above ground level require several interconnected PC 310-7 power converters (typically three) operating the corresponding number of flashheads. A master/slave control line (two-wire) at terminals TB1-4 and TB1-5 at the front panel interconnects the units. A sync pulse on the line flashes all the lights in unison and at the same rate.
Configurations

<table>
<thead>
<tr>
<th>Models</th>
<th>Lights</th>
<th>Operation</th>
<th>White Night Backup</th>
</tr>
</thead>
<tbody>
<tr>
<td>310-7</td>
<td>L-865 White (40 FPM)</td>
<td>White During Daylight</td>
<td>No</td>
</tr>
<tr>
<td>310-7E</td>
<td></td>
<td>White Low Intensity At Night</td>
<td></td>
</tr>
<tr>
<td>310-7I</td>
<td>L-865 White (40 FPM)</td>
<td>White During Daylight</td>
<td>Yes</td>
</tr>
<tr>
<td>310-7EI</td>
<td>External L-864 Beacon</td>
<td>Turn on External Red Light Controller At Night</td>
<td></td>
</tr>
</tbody>
</table>

The “E” option shown above denotes the addition of the optional modem card for remote diagnostics and monitoring.

Alarm Contacts

![Diagram of TB1 Alarm Contacts]

Figure 1-1 – TB1 Alarm Contacts

<table>
<thead>
<tr>
<th>Contact</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Alarm</td>
<td>Combination of Day Intensity and Photocell Errors.</td>
</tr>
<tr>
<td>Red Alarm</td>
<td>Not used.</td>
</tr>
<tr>
<td>Day Intensity Error</td>
<td>Incorrect day intensity.</td>
</tr>
<tr>
<td>Night Intensity Error</td>
<td>Not used.</td>
</tr>
<tr>
<td>Photocell Error</td>
<td>Photocell alarm. The PEC failed to transition within 19 hours.</td>
</tr>
<tr>
<td>Day Mode</td>
<td>Day mode operation.</td>
</tr>
<tr>
<td>Night Mode</td>
<td>Night mode operation.</td>
</tr>
</tbody>
</table>

Photocell

The photocell changes resistance as ambient light changes from day to night or from night to day. The Timing and Trigger Board (PCB1) in the master power converter then converts the changes into the necessary circuit operation to flash the lights at the appropriate intensity for day or night operation.
PCB1 Timing and Trigger Board

PCB1 controls and monitors the operation of the PC 310-7. Status indicators and setup options are shown below.

Figure 1-2 – 2903800 Board Configuration
Board Configuration

The 2903800 board is programmed from the manufacturer for operation in the PC 310-7. The board will be clearly marked in the area shown in Figure 1-2.

Options Switch

The options switch allows configuration of the RS-485 address, number of markers and alarm isolation.

<table>
<thead>
<tr>
<th>Switch</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alarm Isolation</td>
</tr>
<tr>
<td></td>
<td>(OFF – Isolate (default))</td>
</tr>
<tr>
<td></td>
<td>(ON – Report Alarm)</td>
</tr>
<tr>
<td>2-4</td>
<td>RS-485 Address</td>
</tr>
<tr>
<td>5-7</td>
<td>Number of Markers</td>
</tr>
</tbody>
</table>

Alarm Isolation

Setting switch #1 to ON allows a red alarm to be sent to other units over the master/slave sync. This feature is used to allow a slave beacon to send the rest of the system into white backup when a failure occurs in red night mode. The Master beacon will read the alarm and send all beacons into white backup. This is useful for stack systems that have all beacons at the same height and any failing beacon should cause the system to go to white backup. All units in the system must have the switch set to ON for this feature to be used. The default (OFF – Isolate) prevents slave units from causing the system to go to white back up if a red failure occurs on the slave. Generally, a system should only go to white back up if the top (master beacon) fails in red night mode.

RS-485 Communication

RS-485 is used to communicate with the FTM-5000 for monitoring of multiple beacon systems as shown in Figure 2-12. The connections are available on J8 in the lower right corner. The pin assignments are shown below:

![RS-485 Pin Assignments]

When all switches are OFF, the RS-485 is disabled. Once addressed, modem and RS-232 communication will be disabled and the RS-485 will become active. Switches #2-4 define the address as follows:

<table>
<thead>
<tr>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>RS-485 Disabled</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>2</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>3</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>4</td>
</tr>
</tbody>
</table>

Number of Markers

Not used in the 310-7.
RS-232

The RS-232 port allows programming and troubleshooting using Tech Eagle shown below (available for download from www.flashtechnology.com):

A direct connect cable, part number 3859001, is required for connection between the 2903800 board and the PC. For more information, select the Help menu in Tech Eagle.

RES PEC Jumper

The RES PEC jumper is removed by default. The CHB 310-7 uses a PEC 510 resistive photocell for determining mode transition. To use an AC photocell, short this jumper and connect the output of the photocell to pins 4 (AC) and 5 (Return) of J5.

Trigger Voltage

The trigger voltage neon provides an indication that trigger power is being supplied to the 2903800.

Communication LEDs

The TX and RX LED’s indicate the transmission and reception of data through the board’s serial port via the RS-232, RS-485 or the modem card. The DCD LED will be active when a connection has been made via the modem.
Status LEDs

The status LEDs display alarm and mode information as follows:

<table>
<thead>
<tr>
<th>LED</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>NITE ERR</td>
<td>Incorrect night intensity.</td>
</tr>
<tr>
<td>DAY ERR</td>
<td>Incorrect day intensity.</td>
</tr>
<tr>
<td>PEC ALM</td>
<td>Photocell alarm. The PEC failed to transition within 19 hours.</td>
</tr>
<tr>
<td>WHT ALM</td>
<td>Combination of DAY ERR and PEC alarm.</td>
</tr>
<tr>
<td>RED ALM</td>
<td>Combination of NITE ERR and PEC alarm.</td>
</tr>
<tr>
<td>MKR ALM</td>
<td>Detected markers have fallen below the level set by the options switch.</td>
</tr>
<tr>
<td>FAN</td>
<td>Not used.</td>
</tr>
<tr>
<td>SYNC</td>
<td>The Master / Slave Interconnect is active. Flashes during normal operation.</td>
</tr>
<tr>
<td>CONF</td>
<td>A valid flash has been detected.</td>
</tr>
<tr>
<td>DAY</td>
<td>Day mode operation.</td>
</tr>
<tr>
<td>NITE</td>
<td>Night mode operation.</td>
</tr>
<tr>
<td>MKRS</td>
<td>Marker output is active.</td>
</tr>
</tbody>
</table>

RS-485 Setup

RS485TERM and RS485PUP are open by default and should be shorted only on the last 2903800 board in the series of equipment connected to an FTM-5000 as shown in Figure 2-12.

Internal Red Jumper

Always shorted for the CHB 310-7.

Optional Modem Card

The 2903801 modem board is installed in the lower left corner of the board.

The terminal block can be removed for easy connection of the phone wires.

The modem is included with all “E” (Eagle) systems or can be added later as an upgrade to non “E” systems.
Section 2 - Mounting, and Installation

Unpacking
Inspect shipping cartons for signs of damage before opening them. Check package contents against the packing list and inspect each item for visible damage. Report damage claims promptly to the freight handler.

Tools
Although no special tools are necessary, Cooper Crouse-Hinds suggests the following hand tools for installation and maintenance:

- 9 or 12 inch, flat blade #2 screwdriver
- #2 Phillips® head screwdriver
- Medium slip joint pliers
- Set of combination wrenches
- Long-nose pliers
- Assorted nut driver handles: 1/4”, 5/16”, 3/8” recommended
- Analog volt-ohm meter
- Multi-purpose crimp tool

Access

WARNING
Before proceeding, read the warning on Page iii. Disconnect the primary power before opening enclosures.

Power Converter
The base of the power converter has mounting feet. The cover lifts off for unrestricted access to the interior. Release the latches that secure the cover to remove it for internal access.

Flashhead
Pivot the lens open by disengaging two quick-release latches. Two lanyard cables secure the lens. The flashhead normally contains no interlock. Disconnect primary power to the power converter before you open the flashhead. Wait one minute for storage capacitors to drain down. Open the flashhead and use a voltmeter to check that no voltage potential exists between the red and the blue wires on the ceramic terminal posts.

Mounting

Power Converter
Mounting and outline dimensions for the power converter are shown in Figure 2-1. Cooper Crouse-Hinds does not furnish mounting hardware unless ordered as part of an installation kit. Use the following guidelines for mounting the power converter:

Ensure that adequate space exists around the equipment for access during installation, maintenance and servicing.

Allow space for air flow around the power converter.

You must use a bonding strap on a bolt through the power converter case leg. Connect the strap to the site grounding system.
interfere with access by maintenance or service personnel.

You must use a bonding strap with a flashhead mounting bolt when mounting the flashhead to the structure, using the mounting bolt to fasten the strap to the leg that contains the ground connection.

Flashhead Leveling

The flashheads must be level for correct vertical beam alignment. Two leveling vials—aligned with the mounting feet—are permanently attached to the flashhead assembly. Typically, the mounting surface for the flashhead is level and no adjustments are required. When the flashhead is level, bubbles in both leveling vials are centered. For leveling, use the following guidelines:

If adjustment is necessary, raise the appropriate mounting foot with shims or washers. Raising one foot by 1/16 inch (1.6 mm) tilts the beam about 1/2 degree.

Take extreme care to ensure that all four feet rest snugly against a firm mounting surface before tightening the mounting bolts. Failure to do so could result in serious damage to the base when you tighten the bolts.

Photocell

Mounting and outline dimensions for the photocell are shown in Figure 2-3. The photocell uses a male 1/2” NPT for mounting. Use the following guidelines to mount the photocell:

Locate the photocell where it has an unobstructed view of the polar sky.

It must not view direct or reflected artificial light.

The photocell may be supported directly by electrical conduit.

Ensure that the installation is watertight.

Installation

This manual may not contain all the information about installation wiring required for your installation.

NOTE

If installation drawings prepared specifically for your site disagree with information provided in this manual, the site installation drawings should take precedence. Consult any site-specific installation wiring diagram supplied with your equipment.

Cooper Crouse-Hinds wiring diagrams define only minimum requirements recommended for satisfactory equipment operation. It is the responsibility of the installer to comply with all applicable electrical codes.

You can find conduit and other distribution wiring details on electrical installation diagrams provided by Cooper Crouse-Hinds or others. Installation instructions concerning red light marker fixtures are not part of this manual.

All installation wiring should have an insulation rating of 600 volts. You must size power service wiring to satisfy the load demand of the red light system (if present) and the power converters. Read the notes on the installation wiring diagrams supplied both in this manual and with the equipment. See Figure 2-10 for information about wiring alarm connections to the main panel of the power converter.

Power Converter Wiring

Consult the installation wiring drawings. For service wiring, consider the voltage, length of the wire run, and the total load (number of lights). Assume a load of 175 volt-amperes per light, and do not permit the line voltage to drop by more than 5% due to wire resistance. Assume a load of 175 volt-amperes per light to determine the slow-acting fuse ratings at the power distribution panel. Use a value of 250 volt-amperes per light to determine fast-acting
fuse ratings at the power distribution panel and to select a system feeder transformer (if used).

In multiple-unit systems, the master unit and slave units communicate over the “master/slave” interconnect wiring. Twist the wires together at the rate of 12 twists per foot. The recommended minimum size for control and signal conductors is #14 AWG.

Flashhead Wiring
The power converter and flashhead are interconnected by the flashhead cable. When Cooper Crouse-Hinds Part Number 6340, or equivalent cable, is used, the two may be separated by a distance up to 600 feet. Consult the factory when a greater separation is necessary. The cable between the power converter and flashhead requires five conductors with 600 volts (minimum) insulation. Two of the conductors must be #10 AWG. The other three may be #16 AWG (minimum; for mechanical strength) if you are cabling together individual wires.

To ensure long-term equipment reliability, use continuous wiring between the power converters and their flashheads without intervening junctions or splices.

Securing the Cable
Cooper Crouse-Hinds recommends the following method for securing the flashhead cable to a skeletal structure:

1. Run the cable along one of the tower legs and wrap two full turns of two-inch Scotchrap™ #50 tape, or the equivalent, around the cable and tower leg at regular intervals of about 5 feet (1.5 meters).
2. Wrap three full turns of one-inch Scotchrap Filament #890 tape, or the equivalent, over the Scotchrap #50 tape.
3. Wrap four full turns of two-inch Scotchrap #50 tape, or the equivalent, over the Scotchrap Filament #890 tape.
4. Perform steps 1 through 4 also directly above and below any tower leg flanges that the cable may cross.

Photocell Wiring
The photocell is supplied with pigtails for connection to wires that connect to the power converter. It is connected to the main panel of the power converter. It may be located any practical distance from the power converter. The recommended minimum wire gauge is #16 AWG.

The photocell terminals on the slave power converters must be jumpered from TB1-1 to TB1-2. (An alternative jumper may be installed on PCB1 J18-1 to J18-2.) Also, you connect the master unit (to which the photocell is directly connected) to the top flashhead.

Installation Checklist
Complete the following steps before applying power to the lights.

1. Inspect all equipment for damage.
2. Verify the received equipment against the packing list to ensure completeness.
3. Power Converter Mounting. Position and mount each unit correctly, allowing adequate clearance for opening the covers. Use the following checks:
 1. Ensure that the case is mounted upright, is water tight, and grounded to the site grounding system.
 2. Check hardware to ensure that all mounting hardware is tight.
 3. Ensure that only the bottom of the case has drain holes and that they are clear.
4. Ensure that no holes are punched or drilled on the top surface of the case.

5. Ensure that air can flow around the case.

6. Mount the power converter away from radio frequency interference (RFI).

Power Converter Wiring. Examine the installation drawings and use the following checks:

1. Check for proper incoming service voltage.

2. Wire each unit according to the instructions.

3. In multiple installations of three systems, all three power converters should be on the same breaker.

4. Check all electrical connections for tightness.

5. Check all terminal strip connections for tightness.

6. Ground the power converter.

7. Wires at master/slave interconnect terminals should be daisy-chained as a twisted pair between the master power converter and the slave units. The rate of twist is 12 per foot. If a shielded cable is used, ground the shield. For example, ensure that TB1-4 is connected to all TB1-4 connections on all units, and TB1-5 is similarly connected.

Alarm Wiring.

1. If external alarm detection circuit responds to closed contacts, ensure that they are wired to the contacts on TB1 that close on alarm.

2. If external alarm detection circuit responds to open contacts, ensure that they are wired to the contacts on TB1 that open on alarm.

3. Alarm wiring should be lightning and RFI protected: shielded, grounded shield, and in a conduit.

4. If a specific alarm is ganged together from all power converters as one, ensure that the wiring follows local installation instructions.

Flashhead Mounting.

1. Ensure that the flashhead lens can be opened without striking other objects.

2. Level and aim the flashhead.

Flashhead Wiring.

1. Protect the top flashhead against lightning strikes.

2. Ground the flashhead.

3. Check the wiring of the flashhead cable to the flashhead.

4. Secure the flashhead cable to the tower. Support and tape the flashhead cable to prevent its movement by the wind.

Photocell.

1. Locate photocell where it views unobstructed polar sky with no direct or reflected artificial lighting striking it.

2. Mount the photocell vertically to prevent water from entering the unit. Ensure watertight connections.

3. Connect the photocell to the master power converter.

After completing all the steps listed above, turn on the power and perform an operational checkout from procedures in Section 3 of this manual.
Figure 2-1 – Power Converter Mounting and Outline
NOTES:
1. WEIGHT: 17 LBS (7.7 KG)
2. AERODYNAMIC WIND AREA: .93 FT2 (0.0864 M2)
3. DIMENSIONS ARE IN INCHES (MILLIMETERS)
4. ACCESS TO THE Flashhead MUST REMAIN UNOBRUCTED
5. Flashhead SHOULD HAVE LIGHTNING PROTECTION

Figure 2-2 – Flashhead Mounting and Outline
Figure 2-3 – Photocell Mounting and Outline

NOTE: ALL DIMENSIONS ARE IN INCHES (MILLIMETERS)
Figure 2-4 – Typical System – Wiring Guideline
Figure 2-5 – Multiple Dual System with External Red Light Controller Guideline
Figure 2-6 – Typical Dual System Installation
Figure 2-8 – PC 310-7
Power Converter Internal Wiring (110-120V)
COOPER CROUSE-HINDS ALARM RELAY CONTACTS ARE PROTECTED FROM VOLTAGE TRANSIENTS OF UP TO 1000 VOLTS. HOWEVER, WIRED ALARM CONTACTS CAN BE SUBJECTED TO VOLTAGES GREATER THAN 1000 VOLTS BECAUSE OF LIGHTNING. THE FOLLOWING RECOMMENDATIONS MINIMIZE THE POSSIBILITY OF DAMAGE CAUSED BY HIGH VOLTAGE TRANSIENTS ON THE ALARM RELAY CONTACTS OF FLASH TECHNOLOGY POWER CONVERTERS.

THE INSTALLER IS RESPONSIBLE FOR COMPLYING WITH ALL APPLICABLE ELECTRICAL CODES.

NOTES:
1. USE SHIELDED CABLE TO ATTACH COOPER CROUSE-HINDS ALARM RELAY CONTACTS TO EXTERNAL EQUIPMENT.
2. ATTACH THE SHIELD WIRE TO A GND (GROUND) TERMINAL ON THE FLASH TECHNOLOGY POWER CONVERTER AS SHOWN.
3. WHEN POSSIBLE, ROUTE ALARM CONTACT WIRING IN METALLIC, GROUNDED CONDUIT.
4. FOR ADDITIONAL PROTECTION, ADD MOV (VARISTORS) FROM EACH ALARM RELAY CONTACT TERMINAL TO A GND TERMINAL AT THE COOPER CROUSE-HINDS POWER CONVERTER.

Figure 2-10 – Recommended Alarm Wiring
Figure 2-11 – FH 308 Internal Wiring

FT 101 FLASHTUBE

14 RED

14 BLUE

RC 101

RC 102

T102 COUPLING TRANSFORMER

TRIGGER TRANSFORMER

P1

P2

P3

P4

P5

P6

P7

P8

P11

P12

RED BLU

RED

BLU

BLK

WHT

PUR

SHIELD

14 RED

14 BLUE

P1 P2 P3 P4 P5 P6 P7 P8 P11 P12

Cooper Industries Inc.
Crouse-Hinds Division
PO Box 4999,
Syracuse, New York 13221 • U.S.A.
Copyright© 2007, Cooper Industries, Inc.

IF 1545
Rev 1
New 01/08
Figure 2-12 – RS-485 Installation
Section 3 - Maintenance and Troubleshooting

Safety

WARNING
STOP: Before proceeding read the warning on Page iii.

Work safely, as follows:
1. Remove rings and watches before opening the equipment.
2. Shut off the equipment.
3. Remove the component or connect the test instruments.
4. Replace the component.
5. Turn on the power and test the system.
6. Turn off the power and disconnect the test equipment.

Preventive Maintenance

Carry out the following inspection and cleaning procedures at least once a year:
1. Verify that moisture has not accidentally entered the equipment through gaskets or seals, or collected inside as condensation.
2. Verify that all drain holes are clear.
3. Check terminal blocks and relays for corrosion or arcing. Clean or replace any component that shows evidence of high-voltage damage.
4. Check flash tube connections for signs of pitting or arcing. Verify that anode and cathode connections are firmly tightened.
5. Check all electrical connections for tightness and verify the absence of corrosion or electrical arcing.
6. Clean the outside surface of the lens with liquid detergent and water. Wipe it gently with a soft cloth or paper towel.
7. Clean the inside surface of the lens with an Cooper Crouse-Hinds-approved professional plastic cleaner. Wipe the lens with cheesecloth only. Do not use regular cloth or paper towels. A lens cleaning kit, Part Number 8630801, is available from Cooper Crouse-Hinds. Contact Customer Service at 1-866-764-5454.

Storage

Store equipment indoors when not in use.

Diagnostic Testing

The only effective way to check out interconnected lights is to disconnect the master/slave interconnect wire that is connected between power converters and check the power converters as single units, as described in Master Unit.

Sync Signal Evaluation

Refer to Figure 2-7. Note that, for each power converter, the master/slave interconnect line and its return line are connected to TB1-4 and TB1-5 respectively. All units place a pulse on the line, which causes the power converters to flash all the lights at the same time. This pulse is the synchronization pulse. PCB1 in each power converter generates a sync pulse. The first sync pulse to be placed on the line synchronizes the remaining lights. The width of the sync pulse controls the mode of operation.

In the event of a top-most red light failure at night, the power converter places a back-up signal on the line that causes all connected units to flash the white lights at the correct night intensity.
The sync signal is a pulse and difficult to evaluate with a meter. You can detect the sync pulse as an instantaneous movement of the meter indicator. A digital meter with a max-min function may capture part of the pulse. This is generally a sufficient indication of a pulse being present. (A 24V pulse of 16 ms. width might read 12V on a 100 ms. capture time of max-min function.)

RFI Problems

The presence of radio frequency interference (RFI) can burn out components, cause a light to flash intermittently, at the wrong rate, or at the wrong intensity. RFI can enter the light by any wire to or from the unit. The circuits reject or bypass RFI, but Cooper Crouse-Hinds cannot guarantee complete immunity beforehand. After installation, you may find it necessary to add external filters or use other methods to reduce RFI entering the equipment. To minimize interference, ensure proper installation in accordance with AC 70-7460, Appendix 1, Figure 2.

Component Testing

The following procedures describe how to check most of the unit's major electrical components. Always make resistance measurements with the primary power turned off. However, you must make voltage measurements with power applied. Thus, for your safety, carry out all preliminary steps such as connecting test leads or circuit jumpers, or disconnecting existing circuit connections with the power off.

Capacitors

Evaluate the condition of a capacitor with an analog volt-ohmmeter operating in the resistance mode. The following method assumes an instrument with a X100 resistance scale. Place the meter leads across the terminals of an isolated (no electrical connections to other circuits) and fully discharged capacitor. Observe the subsequent needle movement.

If the capacitor is functional, the needle initially indicates zero ohms, but soon begins to rise to higher indicated values. A capacitor that is disconnected from other circuitry is defective if it does not exhibit this behavior. The length of time it takes the needle to reach the 1-megohm reading (about 65% full-scale) is a measure of the capacitance. For example, the time is about 5 seconds for a 10-mfd. capacitor, or 10 seconds for a 20-mfd. capacitor, and so forth.

Manually discharge the capacitor before repeating this measurement. This test may not detect a malfunction that occurs only at high voltage.

A bank of capacitors connected in parallel may be checked as a single unit. If the test indicates a short circuit, the individual capacitors have to be disconnected and checked separately. A shorted capacitor is indicated if the resistance does not rise above zero after several seconds of measurement.

Wiring and Cabling

Wires or cables that move repeatedly will ultimately break. Ensure that all cables (the flashhead cable in particular) are securely fastened at short intervals to the structure or other supports.

Inspection

Closely inspect the units and check the connections against the installation instructions. Also, a close inspection may reveal insulation breakdown, an overheated component, corrosion, loose connections, faulty relays, incorrect hookup, and so forth.
Power Converter

Burst Choke (L1)
Measure the resistance of L1 from TB3-5 to ceramic post E4 (at burst resistor R2). Its resistance should be approximately 7 ohms.

Relays (K2, K3)
A malfunctioning relay may have faulty contacts, a sticky mechanism, or a defective coil. You may determine the first two possibilities by inspection and manually exercising the armature. You can confirm a defective coil by measuring the resistance. To measure the resistance of relay coils, first remove the wires from one of the connections to the coil terminals on the relay.

The resistance across the coil of the K2 Mode Relay or the K3 Discharge Relay should measure approximately 290 ohms.

Timing and Trigger Board (PCB1)
Replace this circuit board with one known to be in good condition.

HV Rectifier Board (PCB2)
Replace this circuit board with one known to be in good condition.

Sense Board (PCB4)
Replace this circuit board with one known to be in good condition.

Discharge Resistor (R1)
The resistance of R1 between ceramic posts E1 and E2 should be 35,000 ohms.

Burst Resistor (R2)
The resistance of R2 between posts E3 and E4 should be 500 ohms.

Power Transformer (T1)
To test this transformer, first remove the PCB1 and the HV rectifier board (PCB2).

Apply power to the unit and measure secondary winding voltages at the terminals indicated below:

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Voltage Range Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB3-1 to TB3-9</td>
<td>900-1050 VAC</td>
</tr>
<tr>
<td>Terminal 2 of Relay K2 or K3 to chassis</td>
<td>100-120 VAC</td>
</tr>
<tr>
<td>J3-1 to J3-2 on PCB1</td>
<td>22-26 VAC</td>
</tr>
</tbody>
</table>

If the voltage on TB3-1 to TB3-9 is substantially below the specified minimum value, check the C4 Tuning Capacitor.

Flashhead

Flashtube (FT101)
Visually inspect the flashtube for broken electrodes, cracked glass, and the solder connections of the pins. A darkened envelope does not necessarily mean the light output would be unacceptable. Before concluding that a faulty flashtube is responsible for an inadequate flash, first rule out other possible causes such as weak or absent discharge voltage or triggering pulses.

Trigger Transformer (T101)
The measured resistance of the secondary winding (potted assembly) should be approximately 150 ohms. Check the ferrite core for cracks. Check the mounting screws for tightness.
Trigger Coupling Transformer (T102)

The coupling transformer should not have open windings. An ohmmeter will indicate a shorted winding because of the wire size. Check with an ohmmeter at the wire terminals.

Photocell Testing

Use the following procedure:

1. First, disconnect the photocell. The system should go to night operation after approximately one minute.
2. If multiple beacon system, disconnect the master/slave interconnect line on each power converter.
3. Operate the manual intensity control switch on each power converter in turn.
4. If each power converter operates correctly with the manual intensity control switch, troubleshoot the photocell wiring or the circuits in the erroneously operating power converter.
5. Reconnect all wires.

During daylight, completely block light from entering the photocell. If the system does not enter night mode after a few minutes, replace the photocell. At night, shine a light on the photocell, if the system does not enter day mode after a few minutes, replace the photocell.

Component Removal and Replacement

A power converter component location diagram is provided in Figure 4-1. A flashhead component location diagram is provided in Figure 4-3. A flashhead electrical wiring diagram is provided in Figure 2-11. A power converter internal wiring diagram is provided in Figure 2-8.

Note the location and color of all wires that you disconnect. When you replace the wiring after you replace the components, ensure that the wiring agrees with Figure 2-8.

The general procedure for removing components follows:

1. Obtain access to the component in question.
 - Disconnect completely or partially the wiring to components first that prevent clear access.
2. Completely remove or relocate these components.
3. Disconnect the wiring to the component that you want to replace.
4. Remove this component.
5. Replace everything in the reverse order: first the component, then the wiring. In some cases, you may have to place some wires on the component before you fasten it in place, then replace the remaining wires.

Most components are relatively easy to access for removal. Only those that are more difficult are described.

Power Converter Components

Capacitors

Before removing or replacing a capacitor always ensure it is discharged by checking with a voltmeter directly across the terminals. Discharge a capacitor by placing a resistance (25 watts/10,000 ohms or greater) between its terminals. Direct shorting may damage the capacitor, and connecting the terminals to the equipment chassis may fail to discharge it.

Remove the fuse for this procedure to prevent application of power if the interlock switch is accidently pressed.
Removal

1. Disconnect the wires leading to capacitors.
2. Remove the hold-down screws.
3. Lift the capacitors from their receiving holes.

Replacement

1. Reverse the removal procedure.
2. Verify that wiring is in accordance with the wiring diagram in Figure 2-8. Wires must be replaced exactly as removed. In some instances, a quick-connect wire terminal does not seat properly if it is not placed on the terminal cluster exactly as it was before removal. This occurs by interference between the insulation on the wire terminal and the insulation surrounding their terminal cluster on the capacitor. Cooper Crouse-Hinds recommends that you lightly squeeze the quick-connect wire terminals with pliers before reinstalling them over the capacitor terminal blades.

Timing and Trigger Board Assembly (PCB1)

PCB1 is mounted on the left side of the component bracket.

Removal

1. Remove all green connector plugs from PCB1 headers.
2. Loosen (but do not remove) the four screws located near the corners of the board.
3. Lift the board from the bracket.

Replacement

1. Cut the appropriate program jumpers according the the board just removed.
2. Reverse the removal procedure.

Input Power Module

Removal

1. Remove all accessible wires and cable connectors attached to the module and to T1 located under the module.
2. Loosen the truss-head screws in the base that fasten the module to the base.
3. Remove the screw under the ground terminal to the left of TB4. This screw fastens the module to the component bracket.
4. Carefully slide the module to the right and lift it out. Ensure that connectors are not bent while doing so.
5. Remove any additional connections necessary to remove the module.

Replacement

1. Reverse the removal procedure.
2. Verify that wiring agrees with Figure 2-8 and restore the wire routing to its original state.

Power Transformer (T1)

Removal

1. Remove the Input Power Module.
2. Remove the four screws holding the transformer to the base plate and remove the transformer.

Replacement

1. Reverse the removal procedure.
2. Verify that wiring agrees with Figure 2-8 and restore the wire routing to its original position.

Component Bracket

The Component Bracket supports the capacitors, terminal blocks, PCB1, PCB2, and other components.
Removal

1. Loosen the four screws holding PCB1 to the bracket and lift PCB1 up and out.
2. Loosen the two truss-head screws below PCB1 on the left side of the bracket that hold the bracket to the base plate.
3. Remove the screw on the left front side of the bracket that fastens the bracket to the Input Power Module.
4. Loosen the two truss-head screws in the base plate on the right side of the bracket that hold the bracket to the base plate.
5. Slide the bracket up off the screws. Be careful of the cable and cable connectors. You may hang the bracket over the edge of the connector panel to perform the remaining steps.

Replacement

1. Reverse the removal procedure.

HV Rectifier Board (PCB2)

The HV rectifier board is mounted on the right of the Component Bracket.

Removal

1. Remove the Component Bracket to gain access to PCB2.
2. Loosen, but do not remove, the screws holding PCB2 to the terminal block TB3.
3. Slide the circuit board out from under the terminal block screws.

Replacement

1. Reverse the removal procedure.
2. Restore the wire routing to its original state.

Mode Relay (K2), Discharge Relay (K3)

Remove the Component Bracket for adequate access to Relay K2.

Removal

1. Remove the capacitors.
2. Remove PCB1.
3. Remove the Component Bracket.
4. Loosen the screws that fasten the wiring connectors to the relay.
5. Carefully disconnect the wires from the terminals of the component and note their locations so that you may more easily replace them.
6. Remove the screws that hold the component to the base plate.
7. Remove the component

Replacement

1. Reverse the removal procedure.
2. Verify that wiring agrees with Figure 2-8 and restore the wire routing to its original state.

Flashhead Components

Flashtube (FT101)

Use the following removal and replacement procedures:

Removal

1. Using a #2 flat-blade screwdriver, loosen the three screws (on screw lugs)—this enables you to disengage the flashtube.
2. Carefully lift the flashtube upward from the assembly.

Cooper Industries Inc.
Crouse-Hinds Division
PO Box 4999, IF 1545
Syracuse, New York 13221 • U.S.A. Rev 1
Copyright© 2007, Cooper Industries, Inc. New 01/08
Replacement
1. Align the pins on the flashtube base with the clamps of the terminal screw lugs, making sure that the red dot on the flashtube base coincides with the red dot marked on the bracket directly under it.

2. Carefully insert the flashtube and settle it into place, making sure the ceramic base is resting directly on the tops of the screw lugs.

3. Secure the flashtube by tightening the three screws on the screw lugs.

Trigger Transformer (T101)

Use the following removal and replacement procedures:

Removal
1. At the trigger wire post adjacent to the flashtube, remove the large diameter wire coming from the trigger transformer.

2. At one of the smaller, side-mounted ceramic posts, remove the small wire to the trigger transformer. Do not disconnect the primary winding wires.

3. Remove the two 4-40 x 2" Phillips®-head screws holding the transformer assembly to the bracket. Note the orientation of the molded secondary winding with respect to fixed features on the bracket, since it must be reinstalled with this same orientation.

4. Remove the outer half of the core and lift off the molded secondary winding. The primary winding will remain hanging in place.

5. Remove the inner half of the core.

Replacement
1. Reassemble the primary and secondary windings over the two halves of the core. Attach the core to the bracket using the two long screws.

2. Reattach the wires.

Trigger Coupling Transformer (T102)

Removal
Removal and replacement are similar to the procedure for the Trigger Transformer (T101).

Operational Checkout
This section describes basic functional testing.

Observe the response of the equipment as indicated in Table 3-1. If the system contains more than one light, and the lights are interconnected for master/slave synchronization, perform the actual checkout steps described below only at the master unit. However, observe all lights for responses. These procedures assume that the following conditions are present:

1. The photocell is subjected to normal outdoor daylight.

2. All installation steps in Installation Checklist have been completed.

3. PCB1 is correctly programmed.
<table>
<thead>
<tr>
<th>Indicator</th>
<th>Function Description</th>
<th>Normal Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I15</td>
<td>NITE ERR – On for night intensity error.</td>
<td>Day: OFF, Night: OFF, Dual System: OFF</td>
</tr>
<tr>
<td>I9</td>
<td>DAY ERR – On when a day intensity error has occurred (light flashed at the incorrect intensity).</td>
<td>Day: OFF, Night: OFF, Dual System: OFF</td>
</tr>
<tr>
<td>I14</td>
<td>PEC ALARM – On for Photocell alarm (Photocell failed to switch state).</td>
<td>Day: OFF, Night: OFF, Dual System: OFF</td>
</tr>
<tr>
<td>I8</td>
<td>WHT ALM – On when a white alarm occurs (white light failed).</td>
<td>Day: OFF, Night: OFF, Dual System: OFF</td>
</tr>
<tr>
<td>I13</td>
<td>RED ALARM – On for optional red alarm (red light failure occurred).</td>
<td>Day: OFF, Night: OFF, Dual System: OFF</td>
</tr>
<tr>
<td>I7</td>
<td>MRK ALM – Not used.</td>
<td>Day: OFF, Night: OFF, Dual System: OFF</td>
</tr>
<tr>
<td>I12</td>
<td>FAN – Not used.</td>
<td>Day: NOT USED, Night: NOT USED, Dual System: NOT USED</td>
</tr>
<tr>
<td>I6</td>
<td>SYNC – Flicks on every six seconds.</td>
<td>Day: FLICK, Night: FLICK, Dual System: FLICK</td>
</tr>
<tr>
<td>I11</td>
<td>CONFIRM – On when PCB1 detects a valid flash. I5 flickers at flash rate.</td>
<td>Day: FLICK, Night: FLICK, Dual System: OFF</td>
</tr>
<tr>
<td>I5</td>
<td>DAY – On when power converter is in day mode.</td>
<td>Day: ON, Night: OFF, Dual System: OFF</td>
</tr>
<tr>
<td>I10</td>
<td>NITE – On when the power converter is in night mode.</td>
<td>Day: OFF, Night: ON, Dual System: ON</td>
</tr>
<tr>
<td>I4</td>
<td>MKRS – Not used.</td>
<td>Day: NOT USED, Night: NOT USED, Dual System: NOT USED</td>
</tr>
<tr>
<td>I3</td>
<td>TRIGGER POWER – Indicates 120 VDC trigger voltage is available.</td>
<td>Day: ON, Night: ON, Dual System: ON</td>
</tr>
</tbody>
</table>

Figure 3-1 – Function Indicators
Manual Override: Fixed Intensities
You may manually override automatic intensity control (as when the manual intensity override switch S2 is set to AUTO), but only if no synchronization line connects to other lights. Remove any wire from external circuitry attached to the master/slave interconnect terminals. Do this either for temporary purposes (testing) or for permanent operation at a fixed flash intensity.

Daytime
Switch the Intensity Control Switch (S2) to DAY

Night
Switch the Intensity Control Switch (S2) to NIGHT.

PCB1 Indicator Lamps
See Section 1 for a description of LED indicators on the PCB1 board for system checkout.

Standard System
The following procedures check normal operation.

1. **Check Normal Daytime Operation:**
 Apply power to the system (pull the plunger of the interlock switch or switches outward to the service position). Ensure that the manual intensity override switch or switches are set to AUTO and verify that the daytime responses at each power converter in the system are the same as those shown in Table 3-2 for Daytime operation.
 - Note that the white light is flashing at the daytime high-intensity.

2. **Check Normal Nighttime Operation:**
 Place an opaque (blocks all light) cover over the photocell and verify that the white night responses at each power converter in the system are the same as those shown in Table 3-2 for Nighttime operation.

 NOTE
 A minute may pass before the photocell responds to the darkened condition after power is applied.
 - Note that the strobe is flashing at the nighttime intensity. The strobe does not flash if a red light system is used.

3. **Check Alarm Sensing:** Remove primary power and temporarily disconnect the black wire on TB2. Apply primary power and verify the following:
 - The light does not flash.
 - The WHT ALM LED (I 8) is lit after three missed flashes.
 - The DAY ERR LED (I 7) is lit.
 - The alarm circuit operates according to installation requirements.

4. **Restore the Equipment After Checking:**
 Replace all disconnected wires. Remove the cover that you placed on the photocell. Ensure that the manual intensity override switch is in the AUTO position.

5. **If Any Responses are Not Normal:**
 If any of the responses above are not exactly as described, proceed to Troubleshooting.

Dual System (White in Daylight, Red at Night)
The following procedures check normal operation of a dual system, a system with
red lights operated by an external red light controller. The external red light controller is connected to TB5.

1. **Check Daytime Operation:** Apply primary power and verify that daytime operation is identical to that for a standard system, step 1. Check Normal Daytime Operation.

2. **Check Nighttime Operation:** Cover the photocell and verify that the white light is not flashing and the red lights are operating normally. The MKRS LED (I 12) is off.

3. **Check Alarm Sensing by Simulating a Failure of the Red Light System:** In this step, you simulate a failure of the red light system. In some installations, you can do this by removing one of the wires (red or black) from the Red Light Controller that connects to the RED MONITOR INPUT at TB5-4 and TB5-5, if an alarm is signaled by contacts that open in the red light controller. See Figure 2-6 and Figure 2-7. Verify the following:
 - The system resumes strobe flashing (at night intensity).
 - The WHT ALM LED (I 8) is not lit.
 - The RED ALM LED (I 3) is lit.
 - The alarm circuit operates according to installation requirements.

4. **Restore the Equipment After Checking:** Replace all disconnected wires. Remove the cover that you placed on the photocell.

5. **If Any Responses are Not Normal:** If any of the responses above are not exactly as described, proceed to Troubleshooting.

Intensity stepping is controlled by a photocell. For testing, the photocell should be exposed to normal outdoor daylight. Figure 1-2 gives the location of the indicator lamps on the board, while Figure 4-1 shows the location of the board within the power converter.

6. **Verify Daytime Operation:** Use the procedure in 1. Check Normal Daytime Operation for testing the power converter.

7. **Verify Nighttime Operation:** Use the procedure in 2. Check Normal Nighttime Operation for testing the power converter.

Troubleshooting

Careful observation of operation often leads directly to a symptom cause. System-level problems affect all lights in a multiple-light system in the same way. Unit-level problems originate in a single light. However, some unit-level malfunctions can affect the entire multi-light system. See the Troubleshooting Charts starting with Figure 3-1.

When you trace a problem to a specific component, see Component Testing and Component Removal and Replacement for further assistance.

Master Unit

A stand-alone unit is a single CHB 310-7. A master unit is similar to a stand-alone unit, except that it is the controlling unit in a multiple-light system. A master unit has the photocell connected and, in a multiple-light system, is the controlling unit with synchronization wires connected at the master/slave interconnect terminals at TB1-4 and TB1-5.

1. Temporarily disconnect the black master/slave interconnect wire at TB1-4.
2. Temporarily set the manual intensity override switch S2 to DAY.

3. Verify the Daytime responses are the same as those in Table 3-2 and Section 1. Check Normal Daytime Operation on Page 3-7.

4. Verify that the strobe is operating at daytime intensity (high intensity).

5. Check the synchronization signal at the black TB1-4 master/slave interconnect terminal with a voltmeter as in Sync Signal Evaluation. Use the intensity control switch to step the unit from one intensity to the other, or cover and uncover the photocell. If the synchronization signal is absent, replace PCB1. A signal response could indicate a slave unit problem or RFI (see Slave Unit, and RFI Problems).

6. Reconnect the black master/slave interconnect wire.

7. Place the manual intensity override switch in the AUTO position.

Slave Unit

A slave unit receives intensity information from a master unit over the master/slave interconnect wires at TB1.

1. Temporarily disconnect the black master/slave interconnect wire at TB1-4. The unit will go into day operation.

2. Verify the Daytime responses are the same as those in Table 3-2 and Section 1. Check Normal Daytime Operation on Page 3-7.

3. Check the synchronization signal at the black master/slave interconnect terminal with a voltmeter. The sync pulse must be present as described in Sync Signal Evaluation. Check wiring if sync is not present.

4. Select NIGHT at the manual intensity override switch. The unit will go into night mode with the strobe flashing at night intensity (low intensity). Note that if a red system is used, the white strobe does not flash at night.

5. Check the signal on the master/slave interconnect wire at TB1-4 with a voltmeter, as described in Sync Signal Evaluation. An absent pulse requires checking the system for RFI (see RFI Problems) and for another malfunctioning unit connected to the master/slave interconnect wire.

6. Reconnect the master/slave interconnect wire to TB1-4.

7. Place the manual intensity override switch in the AUTO position.
RETURN TO NORMAL OPERATION:
SET INTENSITY CONTROL SWITCH TO AUTO AND RECONNECT TB1-4 & TB1-5 WIRES.

NOTE:
A DEFECTIVE PCB1 CAN AFFECT THE ENTIRE SYSTEM.
Figure 3-3 – Troubleshooting Chart (Part 2 of 4)

- **White-Only System – Single Unit Flash Problem?**
 - **Day Strobe Skips, Night Strobe OK?**
 - **Yes**
 - Replace Capacitor C4
 - **No**
 - **Day & Night Strobe Both OK?**
 - Yes
 - Replace in order: FT101, T101, T3
 - Test system after each
 - No
 - **Day Strobe OK, Night Strobe Too Bright?**
 - Yes
 - Replace in order: PCB1, K2, PCB2
 - Test system after each
 - No
 - **Day Strobe Weak, Night Strobe OK?**
 - Yes
 - Replace in order: K2, PCB1
 - Test system after each
 - No
 - **Day Strobe or Night Strobe No Flash?**
 - Yes
 - Replace in order: C3, PCB2, PCB1
 - Test system after each
 - No
 - **Strobe Flashes OK?**
 - Yes
 - Call customer service
 - No
 - **Return to Normal Operation:**
 - Set intensity control switch to auto and reconnect TB1-4 & TB1-5 wires.
 - Note: A defective PCB1 can affect the entire system.
Figure 3-4 – Troubleshooting Chart (Part 3 of 4)
Figure 3-5 – Troubleshooting Chart (Part 4 of 4)
Section 4 – Recommended Spare & Replaceable Parts

Customer Service
Customer Service: 1-866-764-5454
Facsimile: (315) 477-5590
Shipping Address:
 Cooper Crouse-Hinds
 P.O. Box 4999
 Wolf & 7th North St.
 Syracuse, NY 13221

Ordering Parts
To order spare or replacement parts, contact customer service at 1-866-764-5454.

Power Converter Parts
Figure 4-1 Power Converter Major Replaceable Parts lists the major replaceable parts for the power converter.

Flashhead Parts
Figure 4-3 lists the part numbers for the major replaceable parts

Photocell Parts
The part number for the single assembly PEC 510 Photocell is 1855001.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>50 Hz</td>
</tr>
<tr>
<td>BR1</td>
<td>Diode Bridge</td>
<td>6902806</td>
</tr>
<tr>
<td>C2A,C,D</td>
<td>Capacitor, Main Bank, 70 mfd.</td>
<td>6720401</td>
</tr>
<tr>
<td>C2B</td>
<td>Capacitor, Main Bank, 40 mfd.</td>
<td>6386503</td>
</tr>
<tr>
<td>C3</td>
<td>Capacitor, Night Mode, 0.5 mfd.</td>
<td>6848201*</td>
</tr>
<tr>
<td>C4</td>
<td>Capacitor, Tuning, 3 mfd.</td>
<td>6577903</td>
</tr>
<tr>
<td>F1</td>
<td>▶Fuse, Power, MDL8</td>
<td>4901931*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2 Required)</td>
</tr>
<tr>
<td>HV</td>
<td>Neon, High Voltage Warning Light</td>
<td>4902317</td>
</tr>
<tr>
<td>K2</td>
<td>▶Relay 24V, Mode</td>
<td>8900494</td>
</tr>
<tr>
<td>K3</td>
<td>▶Relay 120V, Discharge</td>
<td>8900493</td>
</tr>
<tr>
<td>L1</td>
<td>Choke, Burst</td>
<td>4850601</td>
</tr>
<tr>
<td>L2</td>
<td>Choke, Flash</td>
<td>4175200</td>
</tr>
<tr>
<td>PCB1</td>
<td>▶Timing and Trigger Board**</td>
<td>2903800</td>
</tr>
<tr>
<td>PCB2</td>
<td>▶HV Rectifier Board</td>
<td>2458005</td>
</tr>
<tr>
<td>PCB4</td>
<td>Sense Board</td>
<td>2811101</td>
</tr>
<tr>
<td>PCB5</td>
<td>Modem Board</td>
<td>2903801</td>
</tr>
<tr>
<td>R1</td>
<td>Resistor, Discharge</td>
<td>6900541</td>
</tr>
<tr>
<td>R2</td>
<td>Resistor, Burst, 500 ohm</td>
<td>6900532</td>
</tr>
<tr>
<td>SW1</td>
<td>▶Switch, Interlock</td>
<td>4901220</td>
</tr>
<tr>
<td>T1</td>
<td>Transformer, Power</td>
<td>8842901</td>
</tr>
<tr>
<td>T3</td>
<td>Transformer, Coupling</td>
<td>8336701</td>
</tr>
<tr>
<td>TB1</td>
<td>Terminal Strip, 18 Position</td>
<td>4901930</td>
</tr>
<tr>
<td>TB2</td>
<td>Terminal Strip, 6 Position</td>
<td>4902257</td>
</tr>
<tr>
<td>TB3</td>
<td>Terminal Strip, 11 Position</td>
<td>8721011</td>
</tr>
<tr>
<td>TB4</td>
<td>Terminal Strip, 3 Position</td>
<td>4902134</td>
</tr>
<tr>
<td>TB6</td>
<td>Terminal Strip, 3 Position</td>
<td>4902157</td>
</tr>
<tr>
<td>-</td>
<td>TB1-1 to TB1-2 Jumper</td>
<td></td>
</tr>
<tr>
<td>VR1</td>
<td>Varistor</td>
<td>6901081</td>
</tr>
</tbody>
</table>

▶Recommended as a spare part.

*This part number varies according to the specific equipment voltage configuration.

**Please specify the model number of the equipment when calling for a replacement.

Figure 4-1 – Power Converter Major Replacement Parts
Figure 4-2 – Power Converter Component Layout
<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1,P2,P4,P5,P12</td>
<td>Ceramic Spacer, ¾” diameter</td>
<td>5900844</td>
</tr>
<tr>
<td>P3,P11</td>
<td>Ceramic Spacer, ½” diameter, short</td>
<td>5900842</td>
</tr>
<tr>
<td>P6,P7,P8</td>
<td>Ceramic Spacer, ½” diameter, tall</td>
<td>5900843</td>
</tr>
<tr>
<td>FT101</td>
<td>Flashtube</td>
<td>8384329</td>
</tr>
<tr>
<td>RC101</td>
<td>R.C. Network</td>
<td>1403411</td>
</tr>
<tr>
<td>RC102</td>
<td>R.C. Network</td>
<td>1403412</td>
</tr>
<tr>
<td>T101</td>
<td>Transformer, Trigger</td>
<td>8288201</td>
</tr>
<tr>
<td>T102</td>
<td>Transformer, Coupling</td>
<td>8336701</td>
</tr>
</tbody>
</table>

Figure 4-3 – Flashhead Major Replacement Parts

Figure 4-4 – Flashhead Component Layout
Returning Equipment – Return Material Authorization (RMA)

If a product purchased from Cooper Crouse-Hinds must be returned for any reason, please follow the procedure below:

NOTE: An RMA number must be requested from Cooper Crouse-Hinds prior to shipment of any product. No returned product will be processed without an RMA number. This number will be the only reference necessary for returning and getting information on the product’s progress.

1. To initiate an RMA, customers should call the Cooper Crouse-Hinds Customer Service Center at (866-764-5454) to receive technical assistance and a case number. The following information is required before a case number can be generated:
 - Site Name/Number / FCC Registration number/ Call Letters or Airport Designator
 - Site Owner (provide all that apply – owner, agent or subcontractor)
 - Contractor Name
 - Contractor Company
 - Point of Contact Information: Name, Phone Number, Email Address, Fax Number and Cell Phone (or alternate phone number)
 - Product’s Serial Number
 - Product’s Model Number or part number
 - Case Number (if previously given)
 - Reason for call, with a full description of the reported issue

2. The case number will then serve as a precursor to receiving an RMA number if it is determined that the product or equipment should be returned. To expedite the RMA process, please provide:
 - Return shipping method
 - Purchase Order (if non-warranty repair)
 - Shipping Address
 - Bill To Address
 - Any additional information to assist in resolving the issue or problem

3. A P.O. is required in advance for the replacement of product that may be under warranty. Cooper Crouse-Hinds will then, at its discretion issue a credit once the validity of the warranty has been determined.

4. A purchase order (P.O.) is also required in advance for all non-warranty repairs. **NOTE:** the purchase order is required prior to the issuance of the RMA number.
 - If the P.O. number is available at the time of the call, an RMA number will be issued and the customer must then fax or email the P.O. with the RMA number as the reference, to ensure prompt processing.
• If the P.O. number is NOT available at the time of the call, a Case Number will be given to the customer and should be referenced on the P.O. when faxed or emailed to RMA Rep.

• Cooper Crouse-Hinds will then, at its discretion repair or replace the defective product and return the product to the customer based on the shipping method selected.

• The customer may purchase a new product before sending in the existing product for repair. If Cooper Crouse-Hinds determines the existing product is still covered under warranty a credit will be issued to the customer for the new product.

5. After receiving the Cooper Crouse-Hinds RMA number, please adhere to the following packaging guidelines:

• All returned products should be packaged in a way to prevent damage in transit. Adequate packing should be provided taking into account the method of shipment.

 Cooper Crouse-Hinds will not be responsible for damaged items if product is not returned in appropriate packaging.

6. All packages should clearly display the RMA number on the outside of all RMA shipping containers. RMA products (exact items and quantity) should be returned to:

 Cooper Crouse-Hinds
 Attn: RMA #XXX
 1700 Blue Hills Drive, NE
 Roanoke, VA 24012

7. All RMA numbers:

• Are valid for 15 business days. Products received after may result in extra screening and delays.

• Must have all required information provided before a RMA number to be assigned.

Return to Stock Policy

• Parts can be returned within 90 days of ship date and will be subject to a 20% restocking fee. Product must:
 - Be in the original packaging
 - Not be damaged

• After 90 days no parts can be returned