Electrical Plan Review

Overcurrent Protection and Devices, Short-Circuit Calculations, Component Protection, Selective Coordination, and Other Considerations
Table of Contents

Part I: Overcurrent Protection and Devices
- Objectives .. 3
- Data “Log In” Letter 4
- Important NEC® Requirements 5
- Overcurrent Protective Device Ratings:
 - Voltage and Ampere Ratings 6
 - Interrupting Rating – NEC® 110.9 7
- Short-Circuit Currents and Interrupting Rating 8

Part II: Short-Circuit Calculation
- Point-To-Point Method of Short-Circuit Calculation Formulas and Example 9
- Short-Circuit Calculation Charts 10-11

Part III: Short-Circuit Calculation Problem and Worksheets
- Problem – Detail Drawing 12
- Problem – One-Line Diagram 13
- Problem – Worksheet 14-16

Part IV: Component Protection
- NEC® 110.10, Current Limitation, and Devices ... 17
- Let-Through Charts .. 18-22
- Conductor Protection 23
- Bus and Busway Protection 24
- Motor Circuit Protection 25
- Series Ratings ... 26-27

Part V: Selective Coordination
- Selective Coordination 28
- Selective Coordination – Circuit Breakers 29
- Selective Coordination – Fuses 30

Part VI: Miscellaneous
- Maintenance and Testing Considerations 31
- Grounding and Bonding of Service Equipment 32
- Series Combination Rating Inspection Form 33
- Data “Log In” Form 34-35
Objectives

By reviewing this brochure, the Electrical Inspector, Electrical Contractor, Plan Examiner, Consulting Engineer and others will be able to . . .

• Understand and discuss the critical National Electrical Code® requirements regarding overcurrent protection.

• Understand short-circuit currents and the importance of overcurrent protection.

• Understand the three ratings (voltage, ampere, and interrupting) of overcurrent protective devices.

• Understand that the major sources of short-circuit currents are motors and generators.

• Understand that transformers are NOT a source of short-circuit current.

• Calculate short-circuit currents using the simple POINT-TO-POINT method and related charts.

• Realize that whenever overcurrent protection is discussed, the two most important issues are:
 — HOW MUCH CURRENT WILL FLOW?
 — HOW LONG WILL THE CURRENT FLOW?

• Understand current-limitation and use of let-through charts to determine the let-through current values (peak & RMS) when current-limiting overcurrent devices are used to protect electrical components.

• Apply current-limiting devices to protect downstream electrical components such as conductors, busway, and motor starters.

• Understand series rated combinations and proper application of series rated combinations.

• Understand selective coordination of overcurrent protective devices.

• Understand the meaning and importance of electrical terms commonly used relating to overcurrent protection.

• Understand maintenance, testing, resetting, and replacement requirements of overcurrent protective devices.

• Check electrical plans to determine conformance to the National Electrical Code® including short-circuit currents, interrupting ratings, short-circuit current (withstand) ratings, selective coordination, ground faults, grounding electrode conductors, equipment grounding conductors, etc.

• Verify that circuit, feeder, service, grounding electrode conductors, equipment grounding conductors, and bonding conductors have adequate capacity to conduct safely ANY fault current likely to be imposed on them.

• Adopt a Form Letter and a Data Required Form that can be used to “log-in” the necessary data relating to available fault currents, interrupting ratings, series combination ratings, selective coordination, short-circuit current (withstand ratings) and let-through currents for protection of electrical components.

• Know how to ask the right questions.

On-Line Training & Education

Free Training at www.cooperbussmann.com

Training / education presentations are available under Services/On-Line Training. A specific topic may be available on this site in one or two different formats. The contents and effects of the two versions may differ due to the different capabilities of the formats.
DATE______________________________

TO: ELECTRICAL CONTRACTORS, ENGINEERS, ARCHITECTS.

RE: ELECTRIC SERVICE PERMIT APPLICATION.

COMPLIANCE WITH THE NATIONAL ELECTRICAL CODE® (NEC):
Article 110, Article 210, Article 215, Article 230, Article 240,
Article 250, Article 310, Article 404, Article 408, Article 430,
Article 450, and Article 620.

The City of _______________________, Department of Electrical
Inspection is required to enforce the 2002 National Electrical Code®.
To ensure compliance, attention will be given to the SHORT-CIRCUIT
RATINGS of the equipment and overcurrent devices to be installed.

To accomplish this with minimum effort and time, the attached
form(s) are required to be completed by the electrical contractor,
then submitted to the Electrical Inspection Department PRIOR to
actual installation. Include a one-line riser diagram showing conductor
sizes, conduit sizes, distances, and fault currents at all panels,
motor control centers, and main service equipment.

This data will be reviewed for compliance and conformance to the
above Code sections and will be kept on file for future reference.

Sincerely,

Chief Electrical Inspector
Important NEC® Requirements

Article 100 covers definitions.

110.3(B) requires listed or labeled equipment to be installed and used in accordance with any instructions included in the listing or labeling.

110.9 requires equipment intended to interrupt current at fault levels to have an interrupting rating sufficient for the nominal circuit voltage and the current that is available at the line terminals of the equipment.

110.10 requires the overcurrent protective devices, the total impedance, the component short-circuit current ratings, and other characteristics of the circuit protected to be selected and coordinated to permit the circuit-protective devices used to clear a fault to do so without extensive damage to the electrical components of the circuit. Listed products applied in accordance with their listing meet this requirement.

110.16 covers the required flash protection hazard marking of equipment.

110.22 covers the field labeling requirements when series combination ratings are applied.

Article 210 covers the requirements for branch circuits.

Article 215 covers the requirements for feeder circuits.

Article 225 covers the requirements for outside branch circuits and feeders.

Article 230 covers the requirements for services.

240.2 defines current-limiting devices and coordination.

240.4 requires conductors to be protected against overcurrent in accordance with their ampacity as specified in 310.15. 240.4(B) typically permits the next standard overcurrent protective device rating, per 240.6, to be used if the ampacity of a conductor does not correspond with a standard rating (for overcurrent devices 800 amps or less).

240.5 requires flexible cords, extension cords, and fixture wire to have overcurrent protection rated at their ampacities. Supplementary overcurrent protection is an acceptable method of protection. Additional acceptable branch circuit overcurrent protection conditions for conductors are covered in 240.5(B).

240.6 provides the standard ampere ratings for fuses and inverse time circuit breakers.

240.21 requires overcurrent protection in each ungrounded conductor to be located at the point where the conductors receive their supply, except as permitted in:

(B) Feeder Taps, (C) Transformer Secondary Conductors, (D) Service Conductors, (E) Busway Taps, (F) Motor Circuit Taps, and (G) Conductors from Generator Terminals.

240.60 covers the general requirements for cartridge type fuses and fuseholders. This includes the requirements for 300V type fuses, non-interchangeable fuseholders, and fuse marking.

240.83 covers the marking requirements for circuit breakers.

240.85 covers the requirements for the application of straight (such as 480V) and slash rated (such as 480/277V) circuit breakers. Additional consideration of the circuit breakers' individual pole-interrupting capability for other than solidly grounded wye systems is indicated.

240.86 covers the requirements for series rated combinations, where a circuit breaker with an interrupting rating lower than the available fault current can be applied provided it is properly protected by an acceptable overcurrent protective device on the line side of the circuit breaker. Additional considerations include marking and motor contribution.

250.4 covers the requirements for grounding and bonding of electrical equipment. The bonding of equipment must provide an effective ground-fault current path. The grounding of equipment must provide a low-impedance circuit capable of carrying the maximum ground-fault current likely to be imposed on any part of the wiring system where a ground fault may occur.

250.28 covers the requirements for the main bonding jumper.

250.64 covers the installation requirements of the grounding electrode conductor. 250.66 covers the required size of the grounding electrode conductor.

250.90 requires bonding to be provided where necessary to ensure electrical continuity and the capacity to conduct safely any fault current likely to be imposed. Bonding of services is covered in 250.92. Bonding of other enclosures is covered in 250.96. Bonding size and material is covered in 250.102. Bonding of piping system and structural steel is covered in 250.104.

250.118 covers acceptable types of equipment grounding conductors.

250.120 covers the installation requirements for the equipment grounding conductor. 250.122 and Table 250.122 cover the required minimum size for the equipment grounding conductor. NOTE: Where necessary to comply with 250.4, the equipment grounding conductor may be required to be sized larger than shown in Table 250.122.

Chapter 3 covers the requirements for wiring methods.

310.15 covers the permitted ampacities for conductors.

Article 404 covers the requirements for switches.

Article 408 covers the requirements for panelboards and switchboards.

430.32 covers the overload protection requirements for motor branch circuits. 430.52 covers the branch-circuit, short-circuit and ground-fault protection requirements for motor branch circuits.

450.3 covers the overcurrent protection requirements for transformers.

620.62 requires the overcurrent protective device for each elevator disconnecting means to be selective coordinated with any other supply side overcurrent protective device if multiple elevator circuits are fed from a single feeder.

For more detailed information, see the NE02® bulletin.
Overcurrent Protective Device Ratings

In order for an overcurrent protective device to operate properly, the overcurrent protective device ratings must be properly selected. These ratings include voltage, ampere and interrupting rating. Of the three of the ratings, perhaps the most important and most often overlooked is the interrupting rating. If the interrupting rating is not properly selected, a serious hazard for equipment and personnel will exist. Current limiting can be considered as another overcurrent protective device rating, although not all overcurrent protective devices are required to have this characteristic. This will be discussed in more detail in Part IV, Component Protection.

Voltage Rating
The voltage rating of the overcurrent protective device must be at least equal to or greater than the circuit voltage. The overcurrent protective device rating can be higher than the system voltage but never lower. For instance, a 600V fuse or circuit breaker can be used in a 208V circuit. One aspect of the voltage rating of an overcurrent protective device is a function of its capability to open a circuit under an overcurrent condition. Specifically, the voltage rating determines the ability of the overcurrent protective device to suppress and extinguish the internal arcing that occurs during the opening of an overcurrent condition. If an overcurrent protective device is used with a voltage rating lower than the circuit voltage, arc suppression and the ability to extinguish the arc will be impaired and, under some overcurrent conditions, the overcurrent protective device may not clear the overcurrent safely. The voltage rating is required to be marked on all overcurrent protective device labels.

NEC® 240.60 (A)(2) allows 300V type cartridge fuses to be permitted on single-phase line-to-neutral circuits supplied from 3-phase, 4 wire, solidly grounded neutral source where the line-to-neutral voltage does not exceed 300V. This allows 300V cartridge fuses to be used on single-phase 277V lighting circuits.

Per NEC® 240.85, a circuit breaker with a slash rating, such as 480Y/277V, can only be applied in a solidly grounded wye circuit where the nominal voltage of any conductor to ground does not exceed the lower of the two values and the nominal voltage between any two conductors does not exceed the higher value. Thus, a 480Y/277V circuit breaker could not be applied on a 480V corner grounded, because the voltage to ground exceeds 277 volts. It could not be used on 480V resistance grounded or ungrounded systems because they are not solidly grounded.

Ampere Rating
Every overcurrent protective device has a specific ampere rating. In selecting the ampere rating of the overcurrent protective device, consideration must be given to the type of load and code requirements. The ampere rating of a fuse or circuit breaker normally should not exceed the current carrying capacity of the conductors. For instance, if a conductor is rated to carry 20A, a 20A fuse is the largest that should be used.

As a general rule, the ampere rating of a fuse or a circuit breaker is selected at 125% of the continuous load current. Since the conductors are generally selected at 125% of the continuous load current, the ampacity of the conductors is typically not exceeded. However, there are some specific circumstances in which the ampere rating is permitted to be greater than the current carrying capacity of the conductors. A typical example is the motor circuit; dual-element fuses generally are permitted to be sized up to 175% and an inverse time circuit breaker up to 250% of the motor full-load amperes.

NEC® 240.4(B) allows the next higher standard overcurrent protective device rating (above the ampacity of the conductors being protected) to be used for overcurrent protective devices 800A or less provided the conductor ampacity does not already correspond to a standard overcurrent protective device size and if certain other conditions are met.

NEC® 240.4(C) requires the ampacity of the conductor to be equal to or greater than the rating of the overcurrent protective device for overcurrent devices rated over 800A.

NEC® 240.4(D) requires the overcurrent protective device shall not exceed 15A for 14 AWG, 20A for 12 AWG, and 30A for 10 AWG copper; or 15A for 12 AWG and 25A for 10 AWG aluminum and copper-clad aluminum after any correction factors for ambient temperature and number of conductors have been applied.

NEC® 240.6 lists the standard ampere ratings for fuses and inverse time circuit breakers. Standard amperage sizes are 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 600, 700, 800, 1000, 1200, 1600, 2000, 2500, 3000, 4000, 5000 and 6000. Additional standard ampere ratings for fuses are 1, 3, 6, 10 and 601. The use of non-standard ratings are permitted.
Interrupting Rating

NEC® Article 100 defines interrupting rating as: The highest current at rated voltage that a device is intended to interrupt under standard test conditions.

An overcurrent protective device must be able to withstand the destructive energy of short-circuit currents. If a fault current exceeds the interrupting rating of the overcurrent protective device, the device may actually rupture, causing additional damage.

The picture to the right illustrates how considerable damage can result if the interrupting rating of a protective device is exceeded by a short-circuit current. Thus, it is important when applying a fuse or circuit breaker to use one which can physically interrupt the largest potential short-circuit currents.

NEC® 110.9, requires equipment intended to interrupt current at fault levels to have an interrupting rating sufficient for the current that must be interrupted. This article emphasizes the difference between clearing fault level currents and clearing operating currents. Protective devices such as fuses and circuit breakers are designed to clear fault currents and, therefore, must have short-circuit interrupting ratings sufficient for all available fault levels. Equipment such as contactors and switches have interrupting ratings for currents at other than fault levels, such as normal current overloads and locked rotor currents.

Minimum Interrupting Rating

NEC® 240.60(C) states that the minimum interrupting rating for a branch-circuit cartridge fuse is 10,000A. NEC® 240.83(C) states that the minimum interrupting rating for a branch-circuit circuit breaker is 5,000A. The circuit breaker or fuse must be properly marked if the interrupting rating exceeds these respective minimum ratings. These minimum interrupting ratings and markings do not apply to supplemental protective devices such as glass tube fuses or supplemental protectors.

Modern current-limiting fuses, such as Class J, R, T and L have a high interrupting rating of 200,000A to 300,000A at rated voltage. Molded case circuit breakers typically come in a variety of interrupting ratings from 10,000A to 200,000A and are dependent upon the voltage rating. Typical incremental interrupting ratings for a single series of circuit breakers may be 14kA, 25kA, 65kA and 100kA at 480V. As interrupting rating of circuit breakers increases, so does the cost of the circuit breaker. Typically the circuit breaker that just meets the required available fault current is selected. However, this may be insufficient in the future if changes to the electrical system are made.

Overcurrent Protective Device Ratings
To better understand interrupting rating and the importance of compliance with NEC® 110.9, consider these analogies:

Normal Current Operation

- Flood gates are analogous to overcurrent protective device.
- Reservoir capacity is analogous to available fault current.
- Load current is (100 gallons per minute).

Short-Circuit Operation with Inadequate Interrupting Rating

- Flood gates are destroyed because of inadequate interrupting rating.
- Dam breaks and reservoir releases short circuit current of 50,000 gallons per minute.
- Overcurrent protective device within inadequate interrupting rating, in violation of NEC® 110.9, is destroyed.
- Available fault current (e.g., 50,000 amps).

Short-Circuit Operation with Adequate Interrupting Rating

- Flood gates have adequate interrupting rating, fault current safely interrupted.
- Overcurrent protective device with adequate interrupting rating in compliance with NEC® 110.9 is undamaged.
- Available fault current (e.g., 50,000 amps).
Point-To-Point Method Of Short-Circuit Calculation

Calculation Of Short-Circuit Currents — Point-To-Point Method.

Adequate interrupting rating and protection of electrical components are two essential aspects required by the NEC® 110.3(B), 110.9, 110.10, 240.1, 250.4, 250.90, 250.96, and Table 250.122 Note. The first step to ensure that system protective devices have the proper interrupting rating and provide component protection is to determine the available short-circuit currents. The application of the Point-To-Point method can be used to determine the available short-circuit currents with a reasonable degree of accuracy at various points for either 3φ or 1φ electrical distribution systems. The example shown here assumes unlimited primary short-circuit current (infinite bus).

Basic Short-Circuit Calculation Procedure.

Procedure

Step 1
Determine transf. full-load amperes from either:
- a) Name plate
- b) Tables 3A & 3B
- c) Formula

Formula

\[I_{FLA} = \frac{KVA \times 1000}{E_{L-L}} \times 1.73 \]

Step 2
Find transformer multiplier

Formula

\[\text{Multiplier} = \frac{100}{\text{Transf.}} \]

Step 3
Determine transf. let-through short-circuit current

Formula

\[I_{SCA} = \text{Transf}_{FLA} \times \text{multiplier} \]

Step 4
Calculate "f" factor.

\[f = \frac{1.732 \times L \times I_{L-L}}{C \times n \times E_{L-L}} \]

Step 5
Calculate "M" (multiplier) or take from Table 4.

\[M = \frac{1}{1 + f} \]

Step 6
Compute the available short-circuit current (RMS symmetrical)

Formula

\[I_{FCA} = I_{SCA} \times M \]

Example Of 3-Phase Short-Circuit Calculation

Fault #1

Step 1

\[I_{FLA} = \frac{KVA \times 1000}{E_{L-L}} \times 1.73 \]

Step 2

\[\text{Multiplier} = \frac{100}{\text{Transf.}} \]

Step 3

\[I_{SCA} = \text{Transf} \times \text{multiplier} \]

Step 4

\[f = \frac{1.732 \times L \times I_{L-L}}{C \times n \times E_{L-L}} \]

Step 5

\[M = \frac{1}{1 + f} \]

Step 6

\[I_{FCA} = I_{SCA} \times M \]

Fault #2

Step 4

\[f = \frac{1.732 \times L \times I_{L-L}}{C \times n \times E_{L-L}} \]

Step 5

\[M = \frac{1}{1 + f} \]

Step 6

\[I_{FCA} = I_{SCA} \times M \]

Note 1: Motor short-circuit contribution, if significant, should be added at all fault locations throughout the system. A practical estimate of motor short-circuit contribution is to multiply the total motor full-load current in amperes by 4. Values of 4 to 6 are commonly accepted.

Note 2: For single-phase center-tapped transformers, the L-N fault current is higher than the L-L fault current at the secondary terminals. The short-circuit current available (I) for this case in Step 4 should be adjusted at the transformer terminals as follows:

At L-N center tapped transformer terminals

\[I_{L-N} = 1.5 \times I_{L-L} \] at Transformer Terminals

At some distance from the terminals, depending upon wire size, the L-N fault current is lower than the L-L fault current. The 1.5 multiplier is an approximation and will theoretically vary from 1.33 to 1.67. These figures are based on change in turns ratio between primary and secondary, infinite source available, zero feet from terminals of transformer, and 1.2 x %X and 1.5 x %R for L-N vs. L-L resistance and reactance values. Begin L-N calculations at transformer secondary terminals, then proceed point-to-point.

3-Phase (L-L-L) Arcing Fault 89% (maximum)
Phase-Phase (L-L) Arcing Fault 74% (maximum)
Phase-Ground (L-G) Arcing Fault 38% (minimum)
Point-To-Point Method Of Short-Circuit Calculation

Calculation Of Short-Circuit Currents At Second Transformer In System.

Use the following procedure to calculate the level of fault current at the secondary of a second, downstream transformer in a system when the level of fault current at the transformer primary is known.

Procedure For Second Transformer in System

Step A
Calculate "f"
\[i_{SCAP} = \text{Available fault current at transformer primary.} \]
\[i_{SCAS} = \text{Available fault current at transformer secondary.} \]
\[V_P = \text{Primary voltage L-L.} \]
\[V_S = \text{Secondary voltage L-L.} \]

Formula

\[f = \frac{100,000 \times \text{KVA}}{i_{SCAP} \times V_P \times (1 + \%Z)} \]

\[i_{SCAS} = V_S \times M \times i_{SCAP} \]

Step B
Calculate "M" (multiplier) or take from Table 4.

Step C
Calculate short-circuit current at secondary of transformer.

\[i_{SCAS} = V_S \times M \times i_{SCAP} \]

KVA = KVA rating of transformer.

%Z = Percent impedance of transformer.

Note: To calculate fault level at the end of a conductor run, follow Steps 4, 5, and 6 of Basic Procedure.

Table 1. “C” Values for Busway

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Copper</th>
<th>Aluminum</th>
<th>Copper</th>
<th>Aluminum</th>
<th>Copper</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>100</td>
<td>100</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>200</td>
<td>200</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>400</td>
<td>400</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>200</td>
<td>800</td>
<td>800</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

Table 2. “C” Values for Conductors

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Copper</th>
<th>Aluminum</th>
<th>Copper</th>
<th>Aluminum</th>
<th>Copper</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>100</td>
<td>100</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>200</td>
<td>200</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>400</td>
<td>400</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>200</td>
<td>800</td>
<td>800</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

Table 3A. Three-Phase Transformer—Full-Load Current Rating (In Amperes)

<table>
<thead>
<tr>
<th>Voltage</th>
<th>H.V. UTILITY Connection</th>
<th>Known Fault Current</th>
<th>ISCA(P)</th>
<th>Transformer (ISCA(P) and ISCA(S) are 3Ø fault values)</th>
</tr>
</thead>
<tbody>
<tr>
<td>115/230</td>
<td>Known</td>
<td>208</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>120/240</td>
<td>Known</td>
<td>208</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>230/460</td>
<td>Known</td>
<td>400</td>
<td>389</td>
<td></td>
</tr>
<tr>
<td>240/480</td>
<td>Known</td>
<td>600</td>
<td>587</td>
<td></td>
</tr>
</tbody>
</table>

Table 3B. Single-Phase Transformer—Full-Load Current Rating (In Amperes)

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Transformer KVA Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>200</td>
<td>800</td>
</tr>
</tbody>
</table>

Note: These values are equal to one over the impedance per foot for impedance in a survey of industry.
Table 4. "M" (Multiplier)\(^*\)

<table>
<thead>
<tr>
<th>f</th>
<th>M</th>
<th>1/f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>0.02</td>
<td>0.98</td>
<td>1.02</td>
</tr>
<tr>
<td>0.03</td>
<td>0.97</td>
<td>1.03</td>
</tr>
<tr>
<td>0.04</td>
<td>0.96</td>
<td>1.04</td>
</tr>
<tr>
<td>0.05</td>
<td>0.95</td>
<td>1.05</td>
</tr>
<tr>
<td>0.06</td>
<td>0.94</td>
<td>1.06</td>
</tr>
<tr>
<td>0.07</td>
<td>0.93</td>
<td>1.07</td>
</tr>
<tr>
<td>0.08</td>
<td>0.92</td>
<td>1.08</td>
</tr>
<tr>
<td>0.10</td>
<td>0.91</td>
<td>1.10</td>
</tr>
<tr>
<td>0.15</td>
<td>0.87</td>
<td>1.15</td>
</tr>
<tr>
<td>0.20</td>
<td>0.83</td>
<td>1.20</td>
</tr>
<tr>
<td>0.25</td>
<td>0.80</td>
<td>1.25</td>
</tr>
<tr>
<td>0.30</td>
<td>0.77</td>
<td>1.30</td>
</tr>
<tr>
<td>0.35</td>
<td>0.74</td>
<td>1.35</td>
</tr>
<tr>
<td>0.40</td>
<td>0.71</td>
<td>1.40</td>
</tr>
<tr>
<td>0.50</td>
<td>0.67</td>
<td>1.50</td>
</tr>
<tr>
<td>0.60</td>
<td>0.63</td>
<td>1.60</td>
</tr>
<tr>
<td>0.70</td>
<td>0.59</td>
<td>1.70</td>
</tr>
<tr>
<td>0.80</td>
<td>0.55</td>
<td>1.80</td>
</tr>
<tr>
<td>0.90</td>
<td>0.50</td>
<td>1.90</td>
</tr>
<tr>
<td>1.00</td>
<td>0.45</td>
<td>1.00</td>
</tr>
</tbody>
</table>

\(^*\) M = \frac{1}{1 + f}

Table 5. Short-Circuit Currents Available from Various Size Transformers

(Based upon actual field nameplate data, published information, or from utility transformer worst case impedance)

Voltage	KVA	Phase	Full Load Amps	% Impedance††	Short Circuit Amps‡
25	104	1.5	12175		
37.5	156	1.5	18018		
50	208	1.5	23706		
75	313	1.5	34639		
100	417	1.6	42472		
167	696	1.6	66644		
225	625	1.12	61960		
300	833	1.11	83357		
500	1388	1.24	124364		
750	2082	3.50	60091		
1000	2776	3.50	88121		
1500	4164	3.50	132181		
2000	5552	4.00	154211		
2500	6940	4.00	192764		
75	90	1.0	10035		
112.5	135	1.0	15053		
150	181	1.20	16726		
225	271	1.20	25088		
300	361	1.20	33451		
500	602	1.30	51463		
750	903	3.50	28672		
1000	1204	3.50	38230		
1500	1806	3.50	57345		
2000	2408	4.00	66902		
2500	3011	4.00	83628		

Notes:

- Single phase values are L-N values at transformer terminals. These figures are based on change in turns ratio between primary and secondary, 100,000 KVA primary, zero feet from terminals of transformer, 1.2 (%X) and 1.5 (%R) multipliers for L-N vs. L-L reactance and resistance values and transformer X/R ratio = 3.
- Three-phase short-circuit currents based on "infinite" primary.
- UL listed transformers 25 KVA or greater have a ±10% impedance tolerance. Transformers constructed to ANSI standards have a ±7.5% impedance tolerance (two-winding construction). Short-circuit amps reflect a "worst case" condition (-10%).
- Fluctuations in system voltage will affect the available short-circuit current. For example, a 10% increase in system voltage will result in a 10% increase in the available short-circuit currents shown in the table.
Work Sheet Problem – Main Distribution Panel

Note: Assume steel conduit.
Short-Circuit Calculations – Worksheet

(1) Transformer (Secondary Terminals – Assuming Infinite Primary)
Find: Transformer Full-Load Amperes - I_{FLA} (3 Phase):

$I_{FLA} =$

Find: Multiplier – “M”

$M =$

Calculate: Short-Circuit Current (SCA)

$SCA =$

SCA with voltage variance $=$

Motor Contribution* $=$

* Note: Calculate additional motor short-circuit contribution. Assume 50% (400A) of the total load is from all motors. Multiply total motor FLA by 4 (400 x 4 = 1,600A). In theory, the additional motor short-circuit contribution should be calculated at all points in the system, and may vary depending upon the location.

SCA with voltage variance and motor contribution $=$

(2) MDP
Short-Circuit Current at beginning of run (Transformer Secondary Terminals with voltage variance) $= $

Find: “f” factor

$f =$

Find: Multiplier - “M”

$M =$

Calculate: Short-Circuit Current (SCA)

SCA with voltage variance $=$

Motor Contribution $=$

SCA with voltage variance and motor contribution $=$

(3) LPA
Short-Circuit Current at beginning of run (MDP with voltage variance) $= $

Find: “f” factor

$f =$

Find: Multiplier - “M”

$M =$

Calculate: Short-Circuit Current (SCA)

SCA with voltage variance $=$

Motor Contribution $=$

SCA with voltage variance and motor contribution $=$

(4) LPC
Short-Circuit Current at beginning of run (MDP with voltage variance) $= $

Find: “f” factor

$f =$

Find: Multiplier - “M”

$M =$

Calculate: Short-Circuit Current (SCA)

SCA with voltage variance $=$

Motor Contribution $=$

SCA with voltage variance and motor contribution $=$
Short-Circuit Calculations – Worksheet

(5) LPB
Short-Circuit Current at beginning of run (MDP with voltage variance) = ________________

Find: “f” factor
f =

Find: Multiplier - “M”
M =

Calculate: Short-Circuit Current (SCA)
SCA with voltage variance =
Motor Contribution =
SCA with voltage variance and motor contribution =

(6) AC-1
Short-Circuit Current at beginning of run (MDP with voltage variance) = ________________

Find: “f” factor
f =

Find: Multiplier - “M”
M =

Calculate: Short-Circuit Current (SCA)
SCA with voltage variance =
Motor Contribution =
SCA with voltage variance and motor contribution =

(7) AC-2
Short-Circuit Current at beginning of run (MDP with voltage variance) = ________________

Find: “f” factor
f =

Find: Multiplier - “M”
M =

Calculate: Short-Circuit Current (SCA)
SCA with voltage variance =
Motor Contribution =
SCA with voltage variance and motor contribution =
Short-Circuit Calculations – Worksheet

(8) EMP
Short-Circuit Current at beginning of run (MDP with voltage variance) = ________________

Find: “f” factor

f = ________________

Find: Multiplier - “M”

M = ________________

Calculate: Short-Circuit Current (SCA)

SCA with voltage variance = ________________

Motor Contribution = ________________

SCA with voltage variance and motor contribution = ________________

(9) Fluorescent Fixture
Short-Circuit Current at beginning of run (LPA with voltage variance) = ________________

Find: “f” factor

f = ________________

Find: Multiplier - “M”

M = ________________

Calculate: Short-Circuit Current (SCA)

SCA with voltage variance = ________________

*Ignore motor contribution for this step

(10) Combination Motor Controller
Short-Circuit Current at beginning of run (LPC with voltage variance) = ________________

Find: “f” factor

f = ________________

Find: Multiplier - “M”

M = ________________

Calculate: Short-Circuit Current (SCA)

SCA with voltage variance = ________________

Motor Contribution = ________________

SCA with voltage variance and motor contribution = ________________
NEC® 110.10, Current Limitation, and Devices

NEC® 110.10 states “The overcurrent protective devices, the total impedance, the component short-circuit current ratings, and other characteristics of the circuit to be protected shall be selected and coordinated to permit the circuit protective devices used to clear a fault to do so without extensive damage to the electrical components of the circuit. This fault shall be assumed to be either between two or more of the circuit conductors, or between any circuit conductor and the grounding conductor or enclosing metal raceway. Listed products applied in accordance with their listing shall be considered to meet the requirements of this section.”

This requires that overcurrent protective devices, such as fuses and circuit breakers be selected in such a manner that the short-circuit current ratings of the system components will not be exceeded should a short circuit occur. The “short-circuit current rating” is the maximum short-circuit current that a component can safely withstand. Failure to limit the fault current within the short-circuit current rating may result in component destruction under short-circuit conditions.

The last sentence of NEC® 110.10 emphasizes the requirement to thoroughly review the product standards and to apply components within the short-circuit current ratings in these standards. Simply, selecting overcurrent protective devices that have an adequate interrupting rating per NEC® 110.9, does not assure protection of electrical system components. To properly comply with NEC® 110.10, current limiting overcurrent protective devices may be required.

Current Limitation
The clearing time for an overcurrent protective device can vary depending upon the type of device used. Many circuit breakers require one-half (1⁄2) to three cycles to open as shown in the figure to the right.

However, other devices are tested, listed, and marked as current-limiting, such as the Bussmann® Low-Peak® Fuses. To be listed as current limiting several requirements must be met.

NEC® 240.2 offers the following definition of a current-limiting overcurrent protective device:
“A current-limiting overcurrent protective device is a device that, when interrupting currents in its current-limiting range, will reduce the current flowing in the faulted circuit to a magnitude substantially less than that obtainable in the same circuit if the device were replaced with a solid conductor having comparable impedance.”

A current-limiting overcurrent protective device is one that cuts off a fault current, within its current-limiting range, in less than one-half cycle. See figure to right. It thus prevents short-circuit currents from building up to their full available values. In practice, an overcurrent protective device can be determined to be current limiting if it is listed and marked as current limiting in accordance with the listing standard. It is important to note that not all devices have the same degree of current limitation, some devices are more current limiting than others. The degree of current-limitation can be determined from the let-through charts.

Greatest damage can occur to components in the first half-cycle. Heating of components to very high temperatures can cause deterioration of insulation, or even vaporization of conductors. Tremendous magnetic forces between conductors can crack insulators and loosen or rupture bracing structures.

Current-Limiting Overcurrent Devices
The degree of current-limitation of an overcurrent protective device, such as a current-limiting fuse, depends upon the size, type of fuse, and in general, upon the available short-circuit current which can be delivered by the electrical system. The current-limitation of fuses can be determined by let-through charts. Fuse let-through charts are plotted from actual test data. The fuse curves represent the cutoff value of the prospective available short-circuit current under the given circuit conditions. Each type or class of fuse has its own family of let-through curves.

Prior to using the Let-Through Charts, it must be determined what let-through data is pertinent to equipment withstand ratings. Equipment withstand ratings can be described as:

How Much Fault Current can the equipment handle, and for How Long?

Square of area within waveform loops represent destructive energy impressed upon circuit components

ACTION OF NON-CURRENT-LIMITING OVERCURRENT PROTECTIVE DEVICE

Overcurrent Protective Device operates short-circuit in about 1½ cycles

ACTION OF CURRENT-LIMITING OVERCURRENT PROTECTIVE DEVICE

Overcurrent Protective Device operates and clears short-circuit in less than ½ cycle
The most important data which can be obtained from the Let-Through Charts and their physical effects are the following:
A. Peak let-through current – the square of which relates to maximum mechanical forces
B. Apparent prospective RMS symmetrical let-through current – the square of which relates to the thermal energy

How to Use the Let-Through Charts
This is a typical example showing the short-circuit current available (86,000 amperes) to an 800 ampere circuit, an 800 ampere Bussmann® LOW-PEAK® current-limiting, time-delay fuse, and the let-through data of interest.

Using the example given, one can determine the pertinent let-through data for the Bussmann® KRP-C800SP ampere LOW-PEAK® fuse.

A. Determine the peak let-through current.
Step 1. Enter the chart on the prospective short-circuit current scale at 86,000 amperes (point A) and proceed vertically until the 800 ampere fuse curve is intersected.
Step 2. Follow horizontally until the instantaneous peak let-through current scale is intersected (point D).
Step 3. Read the peak let-through current as 49,000 amperes. (If a fuse had not been used, the peak current would have been 198,000 amperes (point C).)

B. Determine the apparent prospective RMS symmetrical let-through current.
Step 1. Enter the chart on the prospective short-circuit current scale at 86,000 amperes (point A) and proceed vertically until the 800 ampere fuse curve is intersected.
Step 2. Follow horizontally until line A-B is intersected.
Step 3. Proceed vertically down to the prospective short-circuit current (point B).
Step 4. Read the apparent prospective RMS symmetrical let-through current as 21,000 amperes. (The RMS symmetrical let-through current would be 86,000 amperes if there were no fuse in the circuit.)

Most electrical equipment has a withstand rating that is defined in terms of an RMS symmetrical-short-circuit current, and in some cases, peak let-through current. These values have been established through short-circuit testing of that equipment according to an accepted industry standard. Or, as is the case with conductors, the withstand rating is based on a physics formula and is also expressed in an RMS short-circuit current. If both the let-through currents (I_{RMS} and I_p) of the current-limiting overcurrent protective device and the time it takes to clear the fault are less than the withstand rating of the electrical component, then that component will be protected from short-circuit damage.

Let-through charts and tables for Bussmann® KRP-C, LPJ, LPN-RK, LPS-RK, FRN-R, FRS-R, JJS fuses are shown on pages 17-20.
Let-Through Charts

TRON® Class T Fast-Acting Fuses

<table>
<thead>
<tr>
<th>JN</th>
<th>Fuse Size (kA)</th>
<th>15</th>
<th>30</th>
<th>60</th>
<th>100</th>
<th>200</th>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1</td>
<td>1,000</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1</td>
<td>5,000</td>
<td>1 1 1 1 2 3 5 5 5 5 5 5</td>
<td>10,000</td>
<td>1 1 1 2 2 4 6 7 9 9 9 9</td>
<td>15,000</td>
<td>1 1 1 2 3 4 6 9 10 10 10 10</td>
<td>20,000</td>
</tr>
<tr>
<td>30,000</td>
<td>1 1 2 2 3 5 8 11 13 13 13 13</td>
<td>35,000</td>
<td>1 1 2 3 4 6 8 11 13 13 13 13</td>
<td>40,000</td>
<td>1 1 2 3 4 6 9 11 13 13 13 13</td>
<td>50,000</td>
<td>1 1 2 3 4 7 9 12 15 15 15 15</td>
<td>60,000</td>
<td>1 1 2 3 4 7 10 13 16 16 16 16</td>
<td>70,000</td>
</tr>
<tr>
<td>100,000</td>
<td>1 2 2 4 6 8 12 16 19 19 19 19</td>
<td>150,000</td>
<td>1 2 3 4 6 9 13 17 22 22 22 22</td>
<td>200,000</td>
<td>2 2 3 4 7 9 15 19 23 23 23 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

JJS – RMS Let-Through Current (kA)

<table>
<thead>
<tr>
<th>JJS</th>
<th>Fuse Size (kA)</th>
<th>15</th>
<th>30</th>
<th>60</th>
<th>100</th>
<th>200</th>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1</td>
<td>1,000</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1</td>
<td>5,000</td>
<td>1 1 1 1 2 3 4 5 5 5 5 5</td>
<td>10,000</td>
<td>1 1 2 2 2 3 4 6 7 9 9 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15,000</td>
<td>1 1 2 2 3 4 6 7 10 11 11 11</td>
<td>20,000</td>
<td>1 1 2 3 4 6 9 10 12 12 12 12</td>
<td>25,000</td>
<td>1 1 2 2 3 4 7 10 13 13 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30,000</td>
<td>1 1 2 3 4 5 7 10 14 17 17 17</td>
<td>35,000</td>
<td>1 1 2 3 4 5 8 11 13 13 13 13</td>
<td>40,000</td>
<td>1 1 2 3 4 5 9 11 13 13 13 13</td>
<td>50,000</td>
<td>1 1 2 3 4 5 10 13 16 16 16 16</td>
<td>60,000</td>
<td>1 1 2 3 4 6 10 14 17 17 17 17</td>
<td></td>
</tr>
<tr>
<td>70,000</td>
<td>1 1 2 3 4 7 10 14 17 17 17 17</td>
<td>80,000</td>
<td>1 1 2 3 4 6 8 11 15 17 17 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90,000</td>
<td>1 1 2 3 4 5 6 8 11 15 17 17 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100,000</td>
<td>1 1 2 3 4 5 6 8 12 16 19 19 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150,000</td>
<td>1 1 2 3 4 5 6 8 14 22 25 25 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200,000</td>
<td>2 2 3 4 6 9 16 24 28 28 28 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conductor Protection

The increase in KVA capacity of power distribution systems has resulted in available short-circuit currents of extremely high magnitude. Fault induced, high conductor temperatures may seriously damage conductor insulation.

As a guide in preventing such serious damage, maximum allowable short-circuit temperatures, which begin to damage the insulation, have been established for various types of insulation. For example, 75°C thermoplastic insulation begins to be damaged at 150°C.

The Insulated Cable Engineers Association (ICEA) withstand chart, to the right, shows the currents, which, after flowing for the times indicated, will produce these maximum temperatures for each conductor size. The system available short-circuit current, conductor cross-sectional area, and the overcurrent protective device characteristics should be such that these maximum allowable short-circuit currents and times are not exceeded.

Using the formula shown on the ICEA protection chart will allow the engineer to calculate short-circuit current ratings of cable not shown on these pages. This can be used to find short-circuit current ratings where the clearing time is below 1 cycle. The table below the ICEA chart shows a summary of the information from the ICEA Chart/Formula.

The circuit shown in the figure below originates at a distribution panel with an available short-circuit current of 40,000 amperes RMS symmetrical. The 10 AWG THW copper conductor is protected by a Bussmann® LOW-PEAK® fuse sized per NEC® 240.4(D) (30A maximum for a 10 AWG conductor).

The ICEA table shows the 10 AWG conductor to have a short-circuit withstand rating of 6,020A for 1/2 cycle. By reviewing the let-through charts for the LPS-RK30SP, it can be seen that the fuse will reduce the 40,000A fault to a value of 2,000A and clear within 1/2 cycle. Thus, the 10 AWG conductor would be protected by the fuse.

Short-circuit protection of conductors is especially important for equipment grounding conductors since reduced sizing is permitted by Table 250.122. Similar concerns are present where circuit breakers with short-time delay are utilized, since this delays the short-circuit operation of circuit breakers. Motor circuits offer similar concerns (overload relays provide the overload protection, with branch-circuit protection being sized at several times the ampacity of the conductor).
Bus and Busway Protection

The short-circuit ratings of busways are established on the basis of minimum three-cycle duration tests, these ratings will not apply unless the protective device will remove the fault within three cycles or less.

If a busway has been listed or labeled for a maximum short-circuit current with a specific overcurrent device, it cannot be used where greater fault currents are available without violating the listing or labeling.

If a busway has been listed or labeled for a maximum short-circuit current without a specific overcurrent device (i.e., for three cycles), current-limiting fuses can be used to reduce the available short-circuit current to within the withstand rating of the busway.

Per NEMA Publication No. BU1-1999 - Busways may be used on circuits having available short-circuit currents greater than the three cycle rating of the busway rating when properly coordinated with current-limiting devices. Refer to the figures below for an analysis of the short-circuit current rating requirements for the 800 ampere plug-in bus depending upon the overcurrent device selected.

The table below shows the minimum bracing required for bus structures at 480V based upon the available short-circuit current. This can be used to avoid the need and added cost of higher bracing requirements for equipment.

<table>
<thead>
<tr>
<th>Rating</th>
<th>Busway Fuse Available Short-Circuit Amperes RMS Sym.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>600 100 3,400 4,200 4,800 5,200 6,500</td>
</tr>
<tr>
<td>225</td>
<td>600 225 6,000 7,000 8,000 9,000 12,000</td>
</tr>
<tr>
<td>400</td>
<td>600 400 9,200 11,000 13,000 14,000 17,000</td>
</tr>
<tr>
<td>600</td>
<td>600 600 12,000 15,000 17,000 19,000 24,000</td>
</tr>
<tr>
<td>601</td>
<td>600 601 11,000 14,500 17,000 18,000 24,000</td>
</tr>
<tr>
<td>1200</td>
<td>800 1200 16,000 22,500 26,000 28,000 39,000</td>
</tr>
<tr>
<td>1600</td>
<td>800 1600 22,500 28,500 33,000 36,000 46,000</td>
</tr>
<tr>
<td>2000</td>
<td>800 2000 25,000 32,000 37,000 40,000 52,000</td>
</tr>
<tr>
<td>3000</td>
<td>800 3000 25,000 43,000 50,000 58,000 73,000</td>
</tr>
<tr>
<td>4000</td>
<td>800 4000 25,000 48,000 58,000 68,000 94,000</td>
</tr>
</tbody>
</table>

*Fuses are: 100-600 Ampere—LOW-PEAK® YELLOW Dual-Element Fuses—LPS-RK_SP (Class RK1) or LPJ_SP (Class J); 800-4000 Ampere—LOW-PEAK® YELLOW Time-Delay Fuses—KRP-C_SP (Class L). (LOW-PEAK® YELLOW fuses are current-limiting fuses.)
Motor Circuit Protection

The branch circuit protective device size cannot exceed the maximum rating per NEC® 430.52 or the rating shown on equipment labels or controller manufacturers’ tables. NEC® 430.53 for group motor installations and 430.54 for multi-motor and combination-load equipment also require the rating of the branch circuit protective device to not exceed the rating marked on the equipment.

In no case can the manufacturer’s specified rating be exceeded. This would constitute a violation of NEC® 110.3(B). When the label, table, etc. is marked with a “Maximum Fuse Ampere Rating” rather than marked with a “Maximum Overcurrent Device” this then means only fuses can be used for the branch circuit protective device.

There are several independent organizations engaged in regular testing of motor controllers under short-circuit conditions. One of these, Underwriter’s Laboratories, tests controllers rated one horsepower or less and 300 volts or less with 1000 amperes short-circuit current available to the controller test circuit. Controllers rated 50HP or less are tested with 5000 amperes available and controllers rated above 50HP to 200HP are tested with 10,000 amperes available. See the table below for these values (based upon UL 508).

<table>
<thead>
<tr>
<th>Motor Controller HP Rating</th>
<th>Test Short-Circuit Current Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 HP or less and 300V or less</td>
<td>1,000A</td>
</tr>
<tr>
<td>50HP or less</td>
<td>5,000A</td>
</tr>
<tr>
<td>Greater than 50HP to 200HP</td>
<td>10,000A</td>
</tr>
<tr>
<td>201HP to 400HP</td>
<td>18,000A</td>
</tr>
<tr>
<td>401HP to 600HP</td>
<td>30,000A</td>
</tr>
<tr>
<td>601HP to 900HP</td>
<td>42,000A</td>
</tr>
<tr>
<td>901HP to 1600HP</td>
<td>85,000A</td>
</tr>
</tbody>
</table>

Compliance with the UL 508 standard allows deformation of the enclosure, but the door must not be blown open and it must be possible to open the door after the test. In addition, the enclosure must not become energized and discharge of parts from the enclosure is not permitted. In the standard short-circuit tests, the contacts must not disintegrate, but welding of the contacts is considered acceptable. Tests allow the overload relay to be damaged with burnout of the current element completely acceptable. For short-circuit ratings in excess of the standard levels listed in UL 508, the damage allowed is even more severe. Welding or complete disintegration of contacts is acceptable and complete burnout of the overload relay is allowed. Therefore, a user cannot be certain that the motor starter will not be damaged just because it has been UL Listed for use with a specific branch circuit protective device.

Type 1 vs. Type 2 Protection

Coordinated protection of the branch circuit protective device and the motor starter is necessary to insure that there will be no permanent damage or danger to either the starter or the surrounding equipment. There is an “Outline of Investigation”, (UL508E) and an IEC (International Electrotechnical Commission) Standard, IEC Publication 60947, “Low Voltage Switchgear and Control, Part 4-1: Contactors and Motor Starters”, that offer guidance in evaluating the level of damage likely to occur during a short-circuit with various branch-circuit protective devices. These standards define two levels of protection (coordination) for the motor starter:

Type 1. Considerable damage to the contactor and overload relay is acceptable. Replacement of components or a completely new starter may be needed. There must be no discharge of parts beyond the enclosure. In addition, the enclosure must not become energized and discharge of parts from the enclosure is not permitted. See figure to right.

Type 2. No damage is allowed to either the contactor or overload relay. Light contact welding is allowed, but must be easily separable. Manufacturers have verified most of their NEMA and IEC motor controllers to meet the Type 2 requirements as outlined in UL508E or IEC 60947-4-1. Only extremely current-limiting devices have been able to provide the current-limitation necessary to provide verified Type 2 protection. In most cases, Class J, Class RK1, or Class CC fuses are required to provide Type 2 protection. To achieve Type 2 protection, use motor starters that are investigated to UL508E Type 2 with the type and size of fuse recommended.

Type 2 “no damage” protection tables by controller manufacturers’ part numbers with verified fuse protection located on www.bussmann.com

© 2005 Cooper Bussmann, Inc.
Most electrical distribution systems are fully rated as required by NEC® 110.9. A fully rated system is a system where every overcurrent protective device has an interrupting rating equal to or greater than the available fault. Fully rated systems are typically preferred and recommended, but electrical distribution systems are permitted to incorporate series ratings, provided all the requirements of NEC® 240.86 and 110.22 are met. However, the actual application of series ratings is typically limited.

Series rating is a combination of circuit breakers, or fuses and circuit breakers, that can be applied at available short-circuit levels above the interrupting rating of the load side circuit breakers, but not above that of the main or line-side device. Series ratings can consist of fuses protecting circuit breakers, or circuit breakers protecting circuit breakers.

Series Rating Circuit Breakers. In the example below, the 20A, 10,000A interrupting rating circuit breaker has been tested, for a series combination interrupting rating of 65,000A when protected by the upstream 200A, 65,000A interrupting rating circuit breaker. The circuit breaker types for this series combination rating would have to be verified by the evidence of the panelboard or switchboard marking as required by NEC® 240.86(A).

Special Requirements
For Applying a Series Combination Rating
Special requirements and limitations must be considered for the application of a series combination rating, which include:
- Motor contribution limitation
- Manufacturer labeling requirements
- Field labeling requirements
- Lack of coordination limitation
- Proper selection of series combination ratings

Motor Contribution Limitation
The first critical requirement limits the application of a series combination rating where motors are connected between the line-side (protecting) device and the load-side (protected) circuit breaker. NEC® 240.86(B) requires that series ratings shall not be used where the sum of motor full load currents exceeds 1% of the interrupting rating of the load-side (protected) circuit breaker.

The example to the right shows a violation of 240.86(B) due to motor contributions. Since the motor load exceeds 1% of the load-side circuit breaker (10,000 X 0.01 = 100A), this series rated combination cannot be applied.

Series Rating Fuse and Circuit Breakers. In the example below, a 20A, 10,000A interrupting rating circuit breaker has been tested, for a series combination interrupting rating of 200,000A when protected by the upstream Class J fuse. The fuse and circuit breaker types for this series combination rating would have to be verified by the evidence of the panelboard or switchboard marking as required by NEC® 240.86(A).
Series Ratings

Manufacturer Labeling Requirement
NEC® 240.86(A) requires that, when series ratings are used, the switchboards, panelboards, and loadcenters must be marked with the series combination interrupting rating for specific devices utilized in the equipment.

Because there is often not enough room in the equipment to show all of the legitimate series combination ratings, UL 67 (Panelboards) allows for a bulletin to be referenced and supplied with the panelboard (see the example shown to the right). These bulletins or manuals typically provide all of the acceptable series combination ratings. The difficulty is that these bulletins often get misplaced. Because of this, some manufacturers add additional labels with information on how to get replacement manuals (see the example shown below).

Field Labeling Requirement

NEC® 110.22 requires that where overcurrent protective devices are applied with a series combination rating in accordance with the manufacturer’s equipment marking, an additional label must be added in the field. This label must indicate the equipment has been applied with a series combination rating and identify specific replacement overcurrent devices required to be utilized.

The figure below shows an example of the field labeling required by NEC® 110.22. The equipment for both devices of the series combination rating is marked as shown in the figure to assure the series combination rating is maintained during the replacement of devices.

Lack of Coordination Limitation
One of the biggest disadvantages with the application of series combination ratings is that, by definition, the line side device must open in order to protect the load side circuit breaker. With the line side device opening, all other loads will experience an unnecessary power loss.

The example above shows a lack of selective coordination inherent to series combination rating applications. This lack of coordination can cause unnecessary power loss to unfaulted loads and adversely affect system continuity.

Because of the inherent lack of coordination, the application of series combination ratings are best avoided in service entrance switchboards (main and feeders), distribution panels, as well as any critical or emergency distribution panels or any other application where coordination is required.

Proper Selection of Series Combination Ratings
If the application utilizes a series combination rating, refer to the manufacturer’s literature for panelboards, load centers, and switchboards which have been tested, listed and marked with the appropriate series combination ratings. During this process, one will most likely notice that series combination ratings with upstream devices above 400A are very limited. Because of this, series rating in switchboards or higher ampacity distribution panelboards (above 400A) may not be available. For this reason, as well as continuity of service, most series rated applications are best suited for lighting panels (400A or less).

For a table containing fuse/circuit breaker series combination ratings, see the Bussmann® SPD Catalog or go on-line at www.bussmann.com (under Application Info, Series Ratings).
Selective Coordination

Selective coordination is often referred to simply as coordination. Coordination is defined in NEC® 240.2 as: “The proper localization of a fault condition to restrict outages to the equipment affected, accomplished by the choice of selective fault-protective devices.”

It is important to note that the type of overcurrent protective device selected often determines if a system is selectively coordinated.

The figure below shows the difference between a system without selective coordination and a system with selective coordination. The figure on the left shows a system without selective coordination. In this system, unnecessary power loss to unaffected loads can occur, since the device nearest the fault cannot clear the fault before devices upstream open. The system on the right shows a selectively coordinated system. Here, the fault is cleared by the overcurrent device nearest the fault before any other upstream devices open, and unnecessary power loss to unaffected loads is avoided.

Selective Coordination – NEC®

The NEC® discusses selective coordination in 240.12 and states: “Where an orderly shutdown is required to minimize the hazard(s) to personnel and equipment, a system of coordination based on the following two conditions shall be permitted:

1) Coordinated short-circuit protection
2) Overload indication based on monitoring system or devices.

FPN: The monitoring system may cause the condition to go to alarm, allowing corrective action or an orderly shutdown, thereby minimizing personnel hazards and equipment damage.”

In addition, coordination is specifically required in health care facilities (per NEC® 517.17) and multiple elevator circuits (per NEC® 620.62). Good design practice considers continuity of service, cost of downtime, lost worker productivity, and safety of building occupants.

Methods of Performing a Coordination Study

Two methods are most often used to perform a coordination study:
1. Overlays of time-current curves, which utilize a light table and manufacturers’ published data.
2. Computer programs that utilize a PC and allow the designer to select time-current curves published by manufacturers.

Regardless of which method is used, a thorough understanding of time-current characteristic curves of overcurrent protective devices is essential to provide a selectively coordinated system. For fuse systems, verification of selective coordination is quick and easy, merely adhere to fuse ampere rating ratios as indicated by the manufacturer.

It should be noted that the study of time-current curves indicates performance during overload and low-level fault conditions. The performance of overcurrent devices that operate under medium to high level fault conditions are not reflected on standard time-current curves. Other engineering methods must be utilized.
Selective Coordination – Circuit Breakers

The curve to the right shows a 90 ampere circuit breaker and an upstream 400 ampere circuit breaker with an instantaneous trip setting of 5 (5 times 400A = 2000A).

The minimum instantaneous unlatching current for the 400A circuit breaker could be as low as 2000A times .75 = 1500A (± 25% band). If a fault above 1500 amperes occurs on the load side of the 90 ampere breaker, both breakers could open. The 90 ampere breaker generally unlatches before the 400 ampere breaker. However, before the 90 ampere breaker can clear the fault current, the 400 ampere breaker could have unlatched and started to open as well. The example below illustrates this point.

Assume a 4000 ampere short-circuit exists on the load side of the 90 ampere circuit breaker. The sequence of events would be as follows:
1. The 90 ampere breaker unlatches (Point A).
2. The 400 ampere breaker unlatches (Point B). Once a breaker unlatches, it will open. At the unlatching point, the process is irreversible.
3. At Point C, the 90 ampere breaker will have completely interrupted the fault current.
4. At Point D, the 400 ampere breaker also will have completely opened.

Consequently, this is a non-selective system, causing a blackout to the other loads protected by the 400A breaker.

This is typical for molded case circuit breakers due to the instantaneous trip and wide band of operation on medium to high fault conditions. In addition, this can affect other upstream molded case circuit breakers depending upon the size and the instantaneous setting of the circuit breakers upstream and the magnitude of the fault current.

Circuit Breakers with Short-Time-Delay and Instantaneous Override

Some electronic trip molded case circuit breakers and most insulated case circuit breakers (ICCB) offer short-time delay (STD). This allows the circuit breaker the ability to delay tripping for a period of time, typically 6 to 30 cycles. However, with electronic trip molded case circuit breakers and insulated case circuit breakers, a built-in instantaneous override mechanism is present. This is called the instantaneous override function, and will override the STD for medium to high level faults. The instantaneous override setting for these devices is typically 8 to 12 times the rating of the circuit breaker and will “kick in” for faults equal to or greater than the override setting. Because of this instantaneous override, non-selective tripping can exist, similar to molded case circuit breakers and insulated case circuit breakers without short-time delay. Thus, while short-time delay in molded case and insulated case circuit breakers can improve coordination in the overload and low level fault regions, it may not be able to assure coordination for medium and high level fault conditions.

Low Voltage Power Circuit Breakers (LVPCB) with Short-Time Delay

Short-time-delay, with settings from 6 to 30 cycles, is also available on low voltage power circuit breakers. However, with low voltage power circuit breakers an instantaneous override is not required. Thus, low voltage power circuit breakers with short-time delay can hold into faults for up to 30 cycles. This allows the downstream device to open the fault before the upstream low voltage power circuit breaker opens. However, if the fault is between the downstream device and the low voltage power circuit breaker, the electrical equipment can be subjected to unnecessarily high mechanical and thermal stress.
Selective Coordination - Fuses

The figure to the right illustrates the time-current characteristic curves for two sizes of time-delay, dual-element fuses in series, as depicted in the one-line diagram. The horizontal axis of the graph represents the RMS symmetrical current in amperes. The vertical axis represents the time, in seconds.

For example: Assume an available fault current level of 1000 amperes RMS symmetrical on the load side of the 100 ampere fuse. To determine the time it would take this fault current to open the two fuses, first find 1000 amperes on the horizontal axis (Point A), follow the dotted line vertically to the intersection of the total clear curve of the 100 ampere time-delay dual-element fuse (Point B) and the minimum melt curve of the 400 ampere time-delay dual-element fuse (Point C). Then, horizontally from both intersection points, follow the dotted lines to Points D and E. At 1.75 seconds, Point D represents the maximum time the 100 ampere time-delay dual-element fuse will take to open the 1000 ampere fault. At 88 seconds, Point E represents the minimum time at which the 400 ampere time-delay dual-element fuse could open this available fault current. Thus, coordination is assured for this level of current.

The two fuse curves can be examined by the same procedure at various current levels along the horizontal axis (for example, see Points F and G at the 2000 ampere fault level). It can be determined that the two fuses are coordinated, since the 100 ampere time-delay dual-element fuse will open before the 400 ampere time-delay dual-element fuse can melt. Notice above approximately 4,000A, coordination cannot be determined by the time-current curves.

Fuse coordination for the overload region and low fault currents can be shown using the time-current curves. For medium and high fault currents, the time-current curve can not be used, but as long as the downstream fuse clears the fault before the upstream fuse begins to open, coordination is assured.

In order to verify the coordination ability of fuses, fuse manufacturers have developed an engineering tool to aid in the proper selection of fuses for selective coordination. The Selectivity Ratio Guide (SRG) is shown to the right and is based upon Bussmann® fuses. Note that for Bussmann® LOW-PEAK® Fuses, a 2:1 ratio is all that is needed to obtain selective coordination. For coordination ratios for other manufacturers, manufacturer’s literature must be consulted.

* Selectivity Ratio Guide (Line-Side to Load-Side) for Blackout Prevention

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Load-Side Fuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Rating</td>
<td>601-6000A</td>
</tr>
<tr>
<td>Type</td>
<td>Time-Delay</td>
</tr>
<tr>
<td>Trade Name</td>
<td>LOW-PEAK®</td>
</tr>
<tr>
<td>Symbol</td>
<td>KRP-C_SP</td>
</tr>
<tr>
<td>Class</td>
<td>(RK1)</td>
</tr>
<tr>
<td>Buss®</td>
<td>LOW-PEAK®</td>
</tr>
<tr>
<td>601 to 600A</td>
<td>Time-Delay</td>
</tr>
<tr>
<td>600-6000A</td>
<td>Time-Delay</td>
</tr>
<tr>
<td>600 to 600A</td>
<td>to 600A</td>
</tr>
<tr>
<td>0</td>
<td>to 600A</td>
</tr>
</tbody>
</table>

Note: At some values of fault current, specified ratios may be lowered to permit closer fuse sizing. Plot fuse curves or consult with Bussmann®. General Notes: Ratios given in this Table apply only to Buss® fuses. When fuses are within the same case size, consult Bussmann®.
Maintenance and Testing Considerations

When designing electrical distribution systems, required maintenance and testing of the overcurrent protective devices is a very important consideration. The electrical system reliability, component and circuit protection, and overall safety are directly related to the reliability and performance of the overcurrent protective device and can depend upon whether the required testing and maintenance are performed as prescribed for the overcurrent protective device utilized. The required maintenance and testing of the system can depend upon the type of overcurrent protective device selected.

Circuit Breakers
Many engineers and owners view molded case circuit breaker systems as “easy”...just install it, reset the devices if needed and walk away. However, periodic testing and maintenance of circuit breakers is extremely important to the system reliability and protection.

NFPA 70B (1998) - Recommended Practice for Electrical Equipment Maintenance indicates that testing and maintenance of molded case circuit breakers should be completed every 6 months to 3 years, depending upon the conditions of use. This includes typical maintenance such as tightening of connections, checking for signs of overheating, and checking for any structural defects or cracks. Manual operation of the circuit breaker is typically recommended to be completed once per year. Testing of molded case circuit breakers to assure proper overcurrent protection and operation is also recommended during this period. This includes removing the circuit breaker and verifying the protection and operation for overloads (typically 300%) with the manufacturer’s overcurrent trip data. Additional molded case circuit breaker testing of insulation resistance, individual pole resistance, rated hold-in, and instantaneous operation are recommended by NEMA and may require special testing equipment.

It is important to realize that if a deficiency is discovered during testing and maintenance, the only solution is to replace a molded case circuit breaker because adjustments or repairs cannot be made to this type of device. In addition, replacement is typically recommended after the molded case circuit breaker has interrupted a short-circuit current near its marked interrupted rating. This process results in additional expenses and may involve delays in finding a replacement device.

Per NFPA 70B, testing and maintenance of low-voltage power circuit breakers is even more expensive and can be required after tripping on an overcurrent condition. It is important to realize that the maintenance and testing of these devices can only be completed by a qualified person. Often special testing companies are used for this purpose or the device must be sent back to the manufacturer, requiring spare devices during this period.

The question is, how often is this completed? In commercial installations, the answer is probably never. This lack of maintenance and testing can adversely affect the reliability and protection capabilities during overcurrent conditions in the electrical distribution system.

Fuses
NFPA 70B recommends checking fuse continuity during scheduled maintenance, but testing to assure proper operation and protection against overcurrent conditions is not required. Fusible switches and fuse blocks require maintenance, such as tightening of connections and checking for signs of overheating as recommended per NFPA 70B.

Resetting Overcurrent Protective Devices.
As mentioned previously, circuit breakers are sometimes selected over fuses because circuit breakers can be reset where fuses have to be replaced. The most time consuming activity that results from the operation of the overcurrent protective device is typically investigating the cause of the overcurrent condition. A known overload condition is the only situation that permits the immediate resetting or replacement of overcurrent protective devices per OSHA. If the cause for the operation of an overcurrent protective device is not known, the cause must be investigated. Thus, having a device that can be easily reset, such as a circuit breaker, possibly into a fault condition, could be a safety hazard and a violation of OSHA regulations. Because a fuse requires replacement by a qualified person, it is less likely to violate OSHA. Also, when an opened fuse is replaced with a new fuse in the circuit, the circuit is protected by a new factory calibrated device.

Generally, overload conditions occur on branch-circuit devices. Typically this is on lighting and appliance circuits feed from circuit breaker panelboards, where resetting of circuit breakers may be possible. Motor circuits also are subject to overload considerations. However, typically the device that operates is the overload relay, which can be easily reset after an overload situation. The motor branch-circuit device (fuse or circuit breaker) operates, as indicated in NEC® 430.52, for protection of short-circuits and ground-fault conditions. Thus, if this device opens, it should not be reset or replaced without investigating the circuit since it most likely was a short-circuit condition. Overcurrent conditions in feeders and mains are typically the result of short-circuits and are infrequent. Because they are most likely short-circuits, the circuit should be investigated first before resetting or replacing as well. Also, if a feeder or main is protected by a circuit breaker that has opened, the circuit breaker should be examined and tested to be sure it is suitable to be placed back in service.
Grounding & Bonding of Service Equipment

IMPORTANT:
Effective Bonding and Grounding Required:
- NEC® 250.4
- NEC® 250.90
- NEC® 250.96(A)
Must have capacity to conduct safely any fault current likely to be imposed on it.

Bonding
- Why? NEC® 250.90
- What? NEC® 250.92(A)
- How? NEC® 250.92(B)
- Material: NEC® 250.102(A)
- Size: NEC® 250.102(C)
- Performance Criteria: NEC® 250.4

Main Distribution Panel

Non-Metallic Conduit

Equipment Grounding Conductor
- Material: NEC® 250.118
- Install: NEC® 250.120
- Size: NEC® 250.122 and Table 250.122
Note: May require larger equipment grounding conductor than shown in Table 250.122 or current limiting protection device to protect EGC.

Main Bonding Jumper: NEC® 250.24(A)(4), 250.28, 250.96
- Material: NEC® 250.28(A)
- Size: NEC® 250.28(D)
- Connect: NEC® 250.28(C)

Neutral (Grounded) Conductor
- Size: NEC® 230.42, 220.22
- When Serving As An Effective Ground Fault Current Path:
 - What? NEC® 250.24(A)
 - Size: NEC® 250.24(B), 250.66
 - Performance Criteria: NEC® 250.4
 - Definition of Effective Ground Fault Path: NEC® Article 100

Neutral Disconnecting Means: NEC® 230.75
- Main Bonding Jumper: NEC® 250.24(A)(4), 250.28, 250.96
- Material: NEC® 250.28(A)
- Size: NEC® 250.28(D)
- Connect: NEC® 250.28(C)

Grounding Electrode Conductor
- Size: NEC® 250.66
- Material: NEC® 250.62
- Install: NEC® 250.64
- Metal Enclosure: NEC® 250.64(E)
- What: NEC® 250.24(A)

Connection to Electrode
- NEC® 250.68, 8, 70

Bonding of Piping System and Structural Steel
- NEC® 250.104(A) Metal Water Piping, 250.104(B) Other Metal Piping, or 250.104(C) Structural Steel (Not Effectively Grounded)

Supplemental Ground (If Required)
- NEC® 250.52(A)

Grounding Electrode System
- NEC® 250.50
- NEC® 250.52(A)
- (1) Metal Underground Water Pipe
- (2) Metal Frame of Building Steel or Structure
- (3) Concrete Encased Electrode
- (4) Ground Ring
- (5) Rod and Pipe Electrodes
- (6) Plate Electrodes
- (7) Other Local Metal Underground System or Structure

Connection to Electrode
- NEC® 250.68, 8, 70

Equipment Grounding Terminal Bar: NEC® 250.24(A)(4)
- (connected to enclosure)

Non-Metallic Conduit

METER BASE

NEUTRAL

Grounded Neutral Service Entrance Conductors to Pad Mount Transformer

Ungrounded Phase Service Entrance Conductors to Pad Mount Transformer
Inspection Form: Series Rated Combination

1. Short-Circuit Currents
 Is the interrupting rating of the line side fuse or circuit breaker greater than the available short-circuit current \(X_1 \) at its lineside (110.9)?
 \(\text{q YES} \quad \text{q NO} \)

 Is the series combination interrupting rating greater than the available short-circuit current \(X_2 \) at the load side circuit breaker (permitted per 240.86)?
 \(\text{q YES} \quad \text{q NO} \)

2. Manufacturer's Label
 Are both devices in use for the series rated combination marked on the end use equipment in which the load side circuit breaker is installed (or contained in a booklet affixed to the equipment) as required in 240.86(A)?
 \(\text{q YES} \quad \text{q NO} \)

3. Field Installed Label
 Are field labels, as required by 110.22, that indicate “CAUTION – Series Rated Combination”, along with the required replacement parts, panel designations, and series combination interrupting rating, installed on all end use equipment that contain the series combination rating devices?
 \(\text{q YES} \quad \text{q NO} \)

4. Motor Contribution
 If motors are connected between the series rated devices, is the combined full load current from these motors less than 1% of the downstream circuit breakers’ interrupting rating (individual or stand alone interrupting rating) per 240.86(B)?
 \(\text{q YES} \quad \text{q NO} \)

5. Selective Coordination
 Is this series rated combination being installed in something other than a health care facility (see NEC® 517.17)?
 \(\text{q YES} \quad \text{q NO} \)

 Elevator circuits only: Is this series rated combination being installed on an elevator circuit with only one elevator in the building (see NEC® 620.62)?
 \(\text{q YES} \quad \text{q NO} \)

AN ANSWER OF “NO” TO ANY OF THESE QUESTIONS MAY INDICATE A LACK OF COMPLIANCE. LACK OF SUBMITTAL IS CONSIDERED AS EVIDENCE OF LACK OF COMPLIANCE.
DEPARTMENT OF ELECTRICAL INSPECTION
CITY OF ____________________________

Date __________________
Permit __________________

Electrical Contractor

Street Address

City __________ State __________ Zip __________

The following information is requested to determine that the electrical equipment to be installed at:

__
Name of occupant or owner

__

is in compliance with the National Electrical Code® as it relates to available short-circuit currents and interrupting ratings, component protection and selective coordination. See NEC®: 110.3(B), 110.9, 110.10, Article 210, Article 215, Article 230, Article 240, Article 250, Article 310, Article 404, Article 408, Article 430, Article 450 and 620.62.

This form is to be completed and returned to the Department of Electrical Inspection for approval prior to installation. THE FOLLOWING INFORMATION IS TO BE SUPPLIED BY THE ELECTRICAL CONTRACTOR OR OTHER RESPONSIBLE PARTY:

TRANSFORMER KVA __________ IMPEDANCE _________ % SECONDARY VOLTAGE __________

PHASE __________ 3 OR 4 WIRE __________ LENGTH OF SERVICE CONDUCTORS __________

SIZE & NUMBER OF SERVICE CONDUCTORS PER PHASE __________

TYPE OF CONDUCTORS: COPPER n ALUMINUM n

CONDUIT SIZE __________ STEEL n NON-MAGNETIC n

TYPE, SIZE, AND INTERRUPTING RATING OF OVERCURRENT DEVICES IN SERVICE DISCONNECT
(MAIN DISTRIBUTION PANEL) __________

SIZE OF GROUNDING ELECTRODE CONDUCTOR _________ BRACING OF SERVICE EQUIPMENT _________

(page 1 of 2)
Data “Log In”—Form

<table>
<thead>
<tr>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location Of Short-Circuit Current</td>
</tr>
<tr>
<td>ITEM</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

Use back of form or attach separate sheet for data on additional panels.

Use back of form or attach separate sheet to show one-line diagram of service, feeders, and all related panels.

Attach series rated charts for protection of circuit breakers and let-through charts for protection of passive components.

All current values in RMS unless otherwise noted.

The undersigned accepts full responsibility for the values given herein.

SIGNED ____________________________ DATE ______________________

PHONE WHERE YOU CAN BE REACHED __
Customer Assistance

Customer Satisfaction Team
The Cooper Bussmann Customer Satisfaction Team is available to answer questions regarding Cooper Bussmann products and services. Calls should be made between 8:00 a.m. – 4:30 p.m. Central Time for all US time zones.
The Customer Satisfaction Team can be reached via:
• Phone: 636-527-3877
• Toll-free fax: 800-544-2570
• E-mail: fusebox@buss.com

Emergency and After-Hours Orders
To accommodate time-critical needs, Cooper Bussmann offers emergency and after-hours service for next flight out or will call. Customers pay only standard price for the circuit protection device, rush freight charges and a modest emergency fee for this service. Emergency and after-hours orders should be placed through the Customer Satisfaction Team. Call:
• 8:00 a.m.–4:30 p.m. Central Time 636-527-3877
• After hours 314-995-1342

Application Engineering
Application Engineering assistance is available to all customers. The Application Engineering team is staffed by degreed electrical engineers and available by phone with technical and application support Monday – Friday, 8:00 a.m. – 5:00 p.m. Central Time.
Application Engineering can be reached via phone, fax or email:
• Phone: 636-527-1270
• E-mail: fusetech@buss.com

Online Resources
Visit www.cooperbussmann.com for the following services:
• Product cross reference
• Arc-flash calculator
• SCCR calculator
• Training modules

Your Authorized Cooper Bussmann Distributor is: