In the table above, it can be seen that the 40A Low-Peak dual-element fuse used to protect a 10Hp (32.2 FLA) motor keeps short-circuit currents to approximately half the value of the non-time-delay fuse.

Better Selective Coordination (Blackout Prevention)

The larger an upstream fuse is relative to a downstream fuse (for example, feeder to branch), the less possibility there is of an overcurrent in the downstream circuit causing both fuses to open (lack of selective coordination). Fast-acting, non-time-delay fuses require at least a 3:1 ratio between the amp rating of a large upstream, line-side Low-Peak time-delay fuse and that of the downstream, loadside Limitron fuse in order to be selectively coordinated. In contrast, the minimum selective coordination ratio necessary for Low-Peak dual-element fuses is only 2:1 when used with Low-Peak loadside fuses.

The use of time-delay, dual-element fuses affords easy selective coordination—coordination hardly requires anything more than a routine check of a tabulation of required selectivity ratios. As shown in the preceding illustration, close sizing of Cooper Bussmann dual-element fuses in the branch circuit for motor overload protection provides a large difference (ratio) in the amp ratings between the feeder fuse and the branch fuse, compared to the single-element, non-time-delay Limitron fuse.

Better Motor Protection in Elevated Ambients

The derating of dual-element fuses based on increased ambient temperatures closely parallels the derating curve of motors in an elevated ambient. This unique feature allows for optimum protection of motors, even in high temperatures.